Mechanistic Kinetic Model for Symmetric Carboligations Using Benzaldehyde Lyase

M. Zavrel, T. Schmidt, C. Michalik, M. Ansorge-Schumacher, W. Marquardt, J. Büchs and A. C. Spiess
Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through grant GSC 111 is gratefully acknowledged.

©M. Zavrel, T. Schmidt, C. Michalik, M. Ansorge-Schumacher, W. Marquardt, J. Büchs and A. C. Spiess 2008. All rights reserved
List of AICES technical reports: http://www.aices.rwth-aachen.de/preprints
Mechanistic Kinetic Model for Symmetric Carboligations Using Benzaldehyde Lyase

Abstract: For reactions using thiamine diphosphate (ThDP)-dependent enzymes many empirically-derived kinetic models exist. However, there is a lack of mechanistic kinetic models. This is especially true for the synthesis of symmetric 2-hydroxy ketones from two identical aldehydes, with one substrate acting as the donor and the other as the acceptor. In this contribution, a systematic approach for deriving such a kinetic model for thiamine diphosphate (ThDP)-dependent enzymes is presented. The derived mechanistic kinetic model takes this donor–acceptor principle into account by containing two K_m-values even for identical substrate molecules. As example the stereoselective carbon–carbon coupling of two 3,5-dimethoxy-benzaldehyde molecules to (\textbf{R})-3,30,5,50-tetramethoxy-benzoin using benzaldehyde lyase (EC 4.1.2.38) from *Pseudomonas fluorescens* is studied. The model is derived using a model-based experimental analysis method which includes parameter estimation, model analysis, optimal experimental design, in silico experiments, sensitivity analysis and model revision. It is shown that this approach leads to a robust kinetic model with accurate parameter estimates and an excellent prediction capability.

© 2008 Wiley Periodicals, Inc.

Keywords: thiamine diphosphate; benzaldehyde lyase; kinetic modeling; parameter estimation; optimal experimental design; in silico experiments

Introduction

Thiamin diphosphate (ThDP)-dependent enzymes, such as benzaldehyde lyase (BAL, EC 4.1.2.38), benzoylformate decarboxylase (BFD, EC 4.1.1.7) and pyruvate decarboxylase (PDC, EC 4.1.1.1), catalyze carboligase reactions with excellent enantioselectivity (Demir et al., 2001b; Iding et al., 2000; Pohl et al., 2002). This formation of carbon–carbon bonds constitutes one of the key transformations in synthetic organic chemistry (Faber and Kroutil, 2005). Especially the production of chiral hydroxy ketones is of commercial interest since they are important building blocks of drugs and natural products (Demir et al., 2001a).

A reaction mechanism for the decarboxylation has been proposed for PDC (Kluger, 1987) and BFD (Reynolds et al., 1988; Iding et al., 2000; Weiss et al., 1988). According to these investigations, the reaction is catalyzed directly at the cofactor ThDP with an enamine-carbanion as intermediate. A similar mechanism with corresponding ThDP intermediates was later proposed for the carboligation using BAL (Demir et al., 2001b). It is assumed that the enzymes act only as stabilizers of the zwitter-ionic state of the intermediate (Jordan, 2003).

Using isoelectric analogues of ThDP, it has been confirmed that the cofactor plays the crucial role in the reaction mechanism (Leeper et al., 2005). Moreover, X-ray diffraction analysis has revealed that among these enzymes, their cofactor orientation is remarkably similar (Mosbacher et al., 2005). To optimize processes using ThDP-dependent enzymes, it is essential to derive a kinetic model that describes the kinetics of these enzymes in a mechanistically correct manner. According to Vasic-Racki et al. (2003) such a model contributes to an increase in knowledge about the process, which helps to identify optimal operating conditions. Most ThDP-dependent enzymes follow a similar mechanism. Among this group of enzymes, BAL is of special
interest. BAL is a very active catalyst that is able to form and also to cleave chiral hydroxy ketones. Other ThDP-dependent enzymes, such as BFD, are not able to perform this cleavage due to steric hindrance (Knoll et al., 2006). Therefore, in order to fit the derived kinetic model, BAL is chosen.

BAL was discovered by Gonzalez and Vicuna (1989), who had previously observed that Pseudomonas fluorescens is able to grow on media with benzoin or anisoin as the only carbon source (Gonzalez et al., 1988). BAL is a homo-tetramer of four identical subunits of 563 amino acid residues, corresponding to a molecular mass of 58,919 Da. The cofactors ThDP and Mg$^{2+}$ are bound at the interface of a dimer, such that one binding site is formed by two monomers. Nevertheless, the tetrameric enzyme contains four active centers (Mosbacher et al., 2005). BAL has a broad substrate spectrum of differently substituted benzaldehydes. According to Dünkelmann et al. (2002) one substrate molecule acts as a donor whereas another acts as an acceptor.

To date, this donor–acceptor principle has been applied only for the synthesis with two different substrates, namely A and B. By varying the concentration of A, while B is in surplus, and vice versa, the Michaelis constants, K_{mA} and K_{mB}, respectively, can be determined by initial rate measurements. However, the special situation of the synthesis with two identical substrate molecules A to A a symmetric benzoin renders this approach infeasible. Therefore, the occurrence of different K_m-values, for both the donor and the acceptor, has been ignored in previous studies that assume that only a single K_m-value exists (e.g., Hildebrand et al., 2007; Stillger et al., 2006). Motivated by this lack of argument, a novel mechanistic kinetic model with two independent K_m-values is derived for the first time in this contribution.

To fit this mechanistic kinetic model, progress curve analysis is performed, where concentrations are monitored for longer time periods, at most until the thermodynamic equilibrium is reached. Progress curve analysis should be preferred since it can provide more information than initial rate analysis (Duggleby, 2001). For example, effects occurring after a longer period of time, such as enzyme deactivation, can only be detected this way. Moreover, this approach is of industrial interest since for technical applications enzymatic reactions are used within much longer time periods until high conversions are reached. Progress curve analysis requires special software for dynamic simulation and parameter estimation. Although this software is readily available nowadays, this approach is hardly being used in the biocatalytic community. One reason might be that it is still difficult to estimate parameters of non-linear models, if the quality of the initial guess is poor. To overcome this difficulty, Vasic-Racki et al. (2003) proposed to conduct first initial rate measurements to get reasonable initial guesses for the kinetic parameters. However, initial rate measurements are laborious and not feasible in the case of identical substrates. Another approach that can help getting good initial parameter guesses has been presented by Brendel et al. (2006). In that study a so-called incremental identification method is presented that efficiently computes initial parameter guesses based on the model and the available measurement data. The method has recently been applied to a biocatalytic reaction system, namely the formate oxidation using formate dehydrogenase by Michalik et al. (2007).

In this work, the new mechanistic kinetic model for the condensation reaction of two identical substrates with BAL was fitted directly to progress curves without preceding initial rate measurements. The predictability of the derived model was analyzed using advanced statistics tools. Optimal experiments were designed to estimate the parameters precisely. Moreover, the effects of reasonable assumptions on the model predictability have been checked.

Materials and Methods

Experimental

All chemical substances were of analytical grade and purchased by Sigma–Aldrich (Deisenhofen, Germany). 3,5-Dimethoxy-benzaldehyde (DMBA) was used as substrate yielding the product (R)-3,3’,5,5’-tetramethoxy-benzoin (TMB). BAL was fermented in E. coli as a fusion protein with His-tag and purified with affinity chromatography. The enzyme was stored as a lyophilisate. The applied enzyme assay contained 50 mM KPi buffer and both cofactors, 0.25 mM MgCl$_2$ and 0.25 mM ThDP. To increase the solubility of the aromatic compounds, 30% (v/v) of the cosolvent dimethylsulfoxide (DMSO) was added, which also has a stabilizing effect on the enzyme (Domínguez de María et al., 2006). Finally, the pH value was adjusted to 8.5 and the ionic strength to 150 mM. The pH value is one unit lower than the activity optimum of 9.5 observed by Domínguez de María et al. (2006), but leads to a higher stability of the enzyme. Consequently, the pH value of 8.5 was chosen as a compromise between stability and activity.

Since BAL (Pseudomonas fluorescens Biovar I) is a tetramer of four identical subunits, the activity is related to one subunit. Assuming pure enzyme without additional proteins, the molar concentration of the subunit is calculated by dividing the weighted lyophilisate by the molecular weight (59,800 Da) of the subunit including the His-tag (Janzen et al., 2006).

The reaction kinetic measurements were conducted at 25°C using a fluorimeter (PerkinElmer, LS55, Waltheim$^{(2)}$). The concentration of the substrate DMBA was monitored by exciting at 360 nm and recording the fluorescence intensity at 470 nm. Nine progress curves were measured (Table I, experiments A-1). The initial substrate concentration was varied between 1.5 and 3 mM. Owing to the limited solubility of the product, the initial substrate concentration could not exceed 3 mM. Otherwise, the concentration of the formed product would have exceeded 1 mM, where the
product starts to precipitate. The enzyme concentrations have been chosen sufficiently high to prevent enzyme deactivation before equilibrium was reached. This effect has been investigated earlier (data not shown). As long as no significant enzyme deactivation occurs, the enzyme concentration can be considered to be constant in each single experiment. In this case, the model can, in principle, be identified by expanding the experimental limitations. Model-based optimal experimental design techniques (5) and in silico experiments (6) can be used to identify the necessary experimental region (Walter and Pronzato, 1990).

The second reason for unsatisfactory parameter estimates is a model being too complex. The model is then over-specified. In this case, the model parameters are never identifiable, even after conducting optimal in silico experiments. In this case, the model has to be revised in order to reduce the model complexity (4).

For the purposes of modeling and dynamic simulations the software package gPROMS (version 3.0.2, Process System Enterprise Ltd., London, UK) was used. The addition of white noise for the in silico experiments and sensitivity analyses were carried out using Matlab (version 7.3, The MathWorks Inc., Natick, MA).

Results and Discussion

The model reaction for the derivation and experimental verification of the kinetic model for BAL is the carboligation of 3,5-dimethoxy-benzaldehyde (DMBA) to (R)-3,3’,5,5’-tetramethoxy-benzoin (TMB) (Fig. 2A). Initial experiments have shown that the substrate DMBA, which is substituted in meta-position, can act both as acceptor and donor forming the symmetric TMB.

Model Identification Approach

The procedure applied for this study is illustrated in Figure 1. It follows the model-based experimental analysis (MEXA) approach described by Marquardt (2005). Based on initial knowledge about the enzyme mechanism, a kinetic model is developed (1), which takes all micro-reaction steps into account. This model is fitted to experimental data (2) and the quality of the estimated parameters is evaluated statistically in terms of the confidence regions of the parameters and the correlation matrix (Bard, 1974) (3). Moreover, confidence ellipsoids can be analyzed, which visualize the correlation between a pair of parameters (Franceschini et al., 2007) and residuals can be plotted, which help to detect anomalies not predicted by the kinetic model (Bard, 1974; Cornish-Bowden, 2001). To detect the sensitivities of the model prediction, parametric sensitivity analyses can be performed.

If a kinetic model is not able to predict the experimental data satisfactorily, the model has to be revised in order to include more phenomena (Marquardt, 2005) (4). However, in many cases, the model can predict the experimental data quite well, but the parameters cannot be estimated with sufficient precision. In general, there are two possible reasons for this. First, the experimental data can be insufficient for estimating the parameters precisely. This is especially the case if the experimentally accessible region is rather limited, as, for example, due to low solubilities of the reactants. In this case, the model can, in principle, be identified by expanding the experimental limitations.

Table I. Initial experimental conditions (A–I), optimal design for in silico experiments (J–Q) and optimal design for in silico experiments using the simplified kinetic model (R–Y).

<table>
<thead>
<tr>
<th>Experiment</th>
<th>A0 (mM)</th>
<th>P0 (mM)</th>
<th>E (mM)</th>
<th>Duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.00</td>
<td>0</td>
<td>8.3E-05</td>
<td>1,500</td>
</tr>
<tr>
<td>B</td>
<td>2.75</td>
<td>0</td>
<td>8.3E-05</td>
<td>1,500</td>
</tr>
<tr>
<td>C</td>
<td>2.50</td>
<td>0</td>
<td>8.3E-05</td>
<td>1,500</td>
</tr>
<tr>
<td>D</td>
<td>2.25</td>
<td>0</td>
<td>8.3E-05</td>
<td>1,500</td>
</tr>
<tr>
<td>E</td>
<td>2.00</td>
<td>0</td>
<td>8.3E-05</td>
<td>700</td>
</tr>
<tr>
<td>F</td>
<td>1.50</td>
<td>0</td>
<td>8.3E-05</td>
<td>1,000</td>
</tr>
<tr>
<td>G</td>
<td>3.00</td>
<td>0</td>
<td>4.1E-05</td>
<td>3,000</td>
</tr>
<tr>
<td>H</td>
<td>2.75</td>
<td>0</td>
<td>4.1E-05</td>
<td>3,000</td>
</tr>
<tr>
<td>I</td>
<td>2.50</td>
<td>0</td>
<td>4.1E-05</td>
<td>3,000</td>
</tr>
<tr>
<td>J</td>
<td>0.585</td>
<td>0.000</td>
<td>1.2E-04</td>
<td>360</td>
</tr>
<tr>
<td>K</td>
<td>0.000</td>
<td>2.300</td>
<td>1.2E-04</td>
<td>640</td>
</tr>
<tr>
<td>L</td>
<td>0.585</td>
<td>0.000</td>
<td>1.2E-04</td>
<td>360</td>
</tr>
<tr>
<td>M</td>
<td>0.900</td>
<td>0.050</td>
<td>1.2E-04</td>
<td>360</td>
</tr>
<tr>
<td>N</td>
<td>4.200</td>
<td>0.000</td>
<td>1.2E-04</td>
<td>340</td>
</tr>
<tr>
<td>O</td>
<td>0.000</td>
<td>3.600</td>
<td>1.2E-04</td>
<td>292</td>
</tr>
<tr>
<td>P</td>
<td>2.200</td>
<td>1.400</td>
<td>1.2E-04</td>
<td>325</td>
</tr>
<tr>
<td>Q</td>
<td>0.050</td>
<td>0.100</td>
<td>1.2E-04</td>
<td>50</td>
</tr>
<tr>
<td>R</td>
<td>0.380</td>
<td>0.000</td>
<td>1.2E-04</td>
<td>380</td>
</tr>
<tr>
<td>S</td>
<td>0.000</td>
<td>4.800</td>
<td>1.2E-04</td>
<td>620</td>
</tr>
<tr>
<td>T</td>
<td>0.410</td>
<td>0.000</td>
<td>1.2E-04</td>
<td>410</td>
</tr>
<tr>
<td>U</td>
<td>2.840</td>
<td>0.310</td>
<td>1.2E-04</td>
<td>380</td>
</tr>
<tr>
<td>V</td>
<td>3.000</td>
<td>0.000</td>
<td>1.2E-04</td>
<td>320</td>
</tr>
<tr>
<td>W</td>
<td>0.000</td>
<td>4.300</td>
<td>1.2E-04</td>
<td>292</td>
</tr>
<tr>
<td>X</td>
<td>2.370</td>
<td>0.160</td>
<td>1.2E-04</td>
<td>310</td>
</tr>
<tr>
<td>Y</td>
<td>0.000</td>
<td>0.210</td>
<td>1.2E-04</td>
<td>50</td>
</tr>
</tbody>
</table>

For the optimal experimental design the degrees of freedom were the initial substrate concentration A0 (limits: 0–5 mM), the initial product concentration P0 (limits: 0–5 mM) and the measurement duration t (limits: 50–640 s).
This can be written in Cleland’s notation as depicted in Figure 2C. To distinguish between the first and the second binding substrate, they are denoted with A and B, respectively. E denotes the enzyme with the bound cofactors ThDP and Mg$^{2+}$. As these cofactors are bound to the enzyme, the complex of free enzyme and cofactors can be treated as one single species. In the first reaction, the substrate A binds to the enzyme E forming the enzyme–substrate complex EA. After this, B binds to EA forming the ternary EAB complex. The enzyme is then recovered by forming the product P.

Applying the method of King and Altman (1956) Equation (1) was derived. This rate equation is mechanistically correct since it takes all micro-reaction steps into account including the inevitable competitive inhibitions of the forward reaction by P and of the reverse reaction by A. Moreover, the reverse reaction is considered. Consequently, this rate law is valid for ordered bi–uni reactions under all concentrations of the reactants. Therefore, it should be preferred over multiplying simple Michaelis–Menten equations for all substances as it was done in previous publications (e.g., Hildebrand et al., 2007; Stilger et al., 2006)

$$
\nu = -\frac{dA}{dt} = -\frac{dB}{dt} = \frac{dP}{dt} = \frac{k_{cat}}{K_{mB}} \frac{(AB - P)}{K_{eq}} \\
= \frac{k_{cat} (AB - P)}{K_{mB} + K_{mA} + K_{mB} + K_{mB} + K_{mA} + K_{mB}} \quad (1)
$$

Equation (1) shows that the constructed model contains seven parameters, whereas only six micro-reaction constants exist. This means that one parameter is dependent on the
others. To detect this redundancy, the method of Straathof and Heijnen (1996) was applied and thus Equation (2) was identified. Table II lists the definitions of the remaining independent parameters

\[K_i B = \frac{K_m B K_i A}{K_m A (1 - \left(\frac{K_m A}{K_i A} - 1\right) \frac{K_m P}{K_{eq} K_{m B} K_i A})} \]

Besides \(K_{IB} \) there are two more dependent model parameters, \(k_{catr} \) and \(K_{IP} \), which are functions of the independent parameters (Eqs. 22 and 23 in Appendix A). The thermodynamic equilibrium constant is defined as follows:

\[K_{eq} = \frac{P}{A^2} \]
If, in contrast, the reaction is modeled as uni–uni reaction, the thermodynamic equilibrium constant becomes:

$$K_{eq} = \frac{P}{A}$$ \hspace{1cm} (4)

As a result, uni–uni models predict a wrong thermodynamic equilibrium, if different substrate concentrations are used. Thus, they can only be used for modeling initial rates and should not be used for processes, in which high conversions are intended.

With the definitions of the model parameters, the micro-reaction constants can be calculated (Appendix A). In the investigated special case of two identical substrates, the concentration of A and B are always equal ($A = B$). So Equation (1) is transformed to Equation (5):

$$v = \frac{1}{2} \frac{dA}{dr} = \frac{dP}{dr}$$

$$= \frac{k_{cat}}{K_{A}K_{mB}} \left(\frac{A^2 - P}{K_{eq}} \right)$$

$$= \frac{A}{K_{A} \left(1 + \frac{K_{mA}}{K_{mB}} \right) + \frac{A^2}{K_{A}K_{mB}} + \frac{P}{K_{mB}} + \frac{AP}{K_{mA}K_{mB}}}$$

$$= \frac{E}{K_{A}K_{mB}}$$

$$E = \frac{1}{\frac{1}{K_{A}} + \frac{1}{K_{mB}} + \frac{1}{K_{mB}} + \frac{A}{K_{mA}} + \frac{K_{mA}}{K_{mB}}}$$

$$\text{Parameter Estimation}$$

Nine experiments with varying experimental conditions according to Table I (experiments A–I) have been conducted. The experimental data of these experiments have been used to estimate the parameters of the model given in Equation (5). After the parameter estimation step, the model is able to reproduce the experimental data accurately (data shown in the Supplementary Online Material). However, the precision of the parameter estimates is quite diverse (Table III). The thermodynamic equilibrium constant K_{eq} can be estimated very precisely. The accuracy of the maximum turnover number k_{cat} is also acceptable. All other kinetic parameters have unacceptably high inaccuracies since the confidence intervals are much larger than the estimated values. Hence, these parameters cannot be considered to be identifiable under the present experimental conditions. This hypothesis was strengthened by the obtained correlation matrix (Table IVA). Most kinetic parameters are highly correlated and, therefore, cannot be estimated independently. To illustrate the correlations between two parameters, confidence ellipsoids were drawn (Fig. 3). The semi-axes of the ellipsoid for the parameters K_{eq} and k_{cat} are almost parallel to the coordinate axes, which indicates a low correlation of both parameters. In contrast to this, the confidence ellipsoid of K_{mA} and K_{mA} implies a strong positive correlation of these two parameters. Thus, they cannot be estimated independently from each other. Moreover, the region of the 95% confidence ellipsoid of K_{mA} and K_{mA} also includes negative values for the kinetic parameters. This highlights the unreliability of these estimates since only positive kinetic parameters are possible.

According to the procedure described in Model Identification Approach Section, two possible reasons for unidentifiable parameters exist. The experimental data might contain

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mechanistic model</th>
<th>Simplified model</th>
<th>Meaning</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{cat}</td>
<td>k_{1}</td>
<td>k_{1}</td>
<td>Maximum turnover number</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>K_{eq}</td>
<td>$k_{1}k_{2}k_{3}$</td>
<td>$k_{1}k_{2}k_{3}$</td>
<td>Equilibrium constant</td>
<td>mM$^{-1}$</td>
</tr>
<tr>
<td>K_{mA}</td>
<td>$k_{1}k_{2}$</td>
<td>$k_{1}k_{2}$</td>
<td>Affinity constant of A to E</td>
<td>mM</td>
</tr>
<tr>
<td>K_{mB}</td>
<td>$k_{1}(k_{-1} + k_{2})$</td>
<td>$k_{1}(k_{-1} + k_{2})$</td>
<td>Affinity constant of B to EA</td>
<td>mM</td>
</tr>
<tr>
<td>K_{mA}</td>
<td>$k_{1}(k_{-1} + k_{2})$</td>
<td>$k_{1}(k_{-1} + k_{2})$</td>
<td>Affinity constant of P to E</td>
<td>mM</td>
</tr>
<tr>
<td>K_{cat}</td>
<td>$k_{1}k_{2}$</td>
<td>$k_{1}k_{2}$</td>
<td>Dissociation constant of EA</td>
<td>mM</td>
</tr>
</tbody>
</table>

Table II. Definitions of the model parameters for the derived mechanistic kinetic model and the simplified kinetic model.

Table III. Parameter estimates and 95% confidence intervals using the derived mechanistic kinetic model (3rd column), after performing optimal in silico experiments (4th column), using the simplified kinetic model (5th column), and after performing optimal in silico experiments using the simplified kinetic model (6th column).
insufficient information or the model structure might be too complex. To check whether this poor parameter precision is due to the tight experimental limitations, eight optimal experiments were designed. The degrees of freedom for the optimal experimental design were the initial concentrations of the substrate and the product and the experiment duration. The E-optimality criterion was used as the objective function (Walter and Pronzato, 1990). Reasonable limits have been used for all degrees of freedom. The aim was to determine whether the model parameters are generally not identifiable or whether they are identifiable under different experimental conditions, such as different substrate concentrations. Moreover, the addition of product at the beginning of the reaction was investigated, which was expected to cause a higher accuracy of the parameter estimates.

The designed optimal experiments are listed in Table I (experiments J–Q). These experiments confirm the assumption that it is advantageous to perform also measurements with initial product concentrations. Interestingly, the designed experiments contain quite different time scales. An explanation for this could be that the longer lasting experiments are optimizing the estimation accuracy of the equilibrium constant K_{eq} whereas the shorter ones focus on the kinetic parameters in the beginning of the experiment such as k_{catf}.

Since the experimental limits could not be expanded sufficiently, the optimal experiments were carried out in silico. Therefore, simulations with the fitted mechanistic

Table IV. Correlation matrix of the estimated parameters using the derived mechanistic kinetic model (A), after performing optimal in silico experiments (B), using the simplified kinetic model (C), and after performing optimal in silico experiments using the simplified kinetic model (D).

<table>
<thead>
<tr>
<th></th>
<th>k_{catf}</th>
<th>K_{eq}</th>
<th>K_{mA}</th>
<th>K_{mB}</th>
<th>K_{mP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.00</td>
<td>-0.13</td>
<td>-0.86</td>
<td>-0.83</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>K_{eq}</td>
<td>1.00</td>
<td>-0.10</td>
<td>-0.12</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>K_{mA}</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>K_{mB}</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>K_{mP}</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>k_{catf}</th>
<th>K_{eq}</th>
<th>K_{mA}</th>
<th>K_{mB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1.00</td>
<td>0.15</td>
<td>-0.63</td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td>K_{eq}</td>
<td>1.00</td>
<td>-0.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>K_{mA}</td>
<td>1.00</td>
<td>0.94</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td>K_{mB}</td>
<td>1.00</td>
<td>-0.93</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>K_{mP}</td>
<td>1.00</td>
<td>-0.55</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>k_{catf}</th>
<th>K_{eq}</th>
<th>K_{mA}</th>
<th>K_{mB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.000</td>
<td>0.535</td>
<td>0.691</td>
<td>0.676</td>
</tr>
<tr>
<td></td>
<td>K_{eq}</td>
<td>1.000</td>
<td>0.403</td>
<td>0.386</td>
</tr>
<tr>
<td></td>
<td>K_{mA}</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K_{mB}</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K_{mP}</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>k_{catf}</th>
<th>K_{eq}</th>
<th>K_{mA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1.000</td>
<td>-0.620</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>K_{eq}</td>
<td>1.000</td>
<td>-0.527</td>
</tr>
<tr>
<td></td>
<td>K_{mA}</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K_{mB}</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K_{mP}</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Ninety-five percent confidence ellipsoids for K_{eq}/k_{catf} (top) and K_{mA} (K_{eq}) (bottom).
kinetic model (Eqs. 2 and 5) and the conditions as determined by the optimal experiments were carried out. The simulated data for the substrate concentration were disturbed with white noise with a constant standard deviation of 0.001 mM. This low noise level, compared to the experimental error of about 0.05 mM, was used to assure that the experimental error was not the reason for a potential unidentifiability of the kinetic parameters. The obtained data were then treated as “real” experimental data for fitting the model. These data can be considered as taken under ideal conditions, which means that no solubility problems exist, enantiopure product is available and the measurement technique is highly precise.

The obtained parameter estimates show much smaller confidence regions which indicates that the experimentally accessible region has indeed been too limited in the first set of experiments and that the measurement technique is not sufficiently precise (Table III). The confidence ellipsoid for \(K_{mP} \) and \(K_{IA} \) (Fig. 4) illustrates that the confidence region decreased remarkably compared to the previous confidence ellipsoid of these parameters depicted in Figure 3B. On the other hand, the confidence region for \(K_{IA} \) still reaches negative values. Moreover, the correlation of \(K_{mP} \) and \(K_{IA} \) is still very high. High correlations between the kinetic parameters are also observed for other parameters (Table IVB). Thus, even if the in silico experiments described above are used and the model is assumed to be correct some model parameters can still not be estimated with sufficient accuracy. Therefore, it can be concluded that the tight experimental conditions are not the main reason for the low parameter precision, but a too complex model with too many parameters.

Before revising the model, it is reasonable to investigate why these parameters cannot be identified. Thus, in order to detect how sensitive the parameters of the derived kinetic model are, a dynamic sensitivity analysis was performed. Figure 5A depicts the normalized sensitivities of the model parameters of the derived mechanistic model (A) and of the simplified kinetic model (B).

According to this, \(k_{cat} \) is most sensitive at the start of the reaction and, therefore, can be estimated quite precisely. \(K_{eq} \) is the only parameter that is sensitive for longer time periods. For this reason, its estimate is also very accurate. \(K_{mP} \) turns out to be very insensitive, which explains the high level of uncertainty for this parameter. The parameters \(K_{IA} \) and \(K_{mB} \) possess almost identical sensitivity curves. Therefore, they are strongly negatively correlated. The sensitivity curve of \(K_{mA} \) is inverse to the ones of \(K_{IA} \) and \(K_{mB} \) which also causes high correlations to these parameters. For this reason, these kinetic parameters cannot be estimated independently of each other. These findings show that the model comprises too many parameters and has to be revised according to the MEXA methodology.

Model Revision

As shown in Figure 2B, the micro-reaction constants \(k_1 \) and \(k_2 \) denote the rate constants for the binding of the substrate molecules to the enzyme and the enzyme-substrate complex, respectively. These binding processes can be considered as a sum of three steps. First, the substrate molecules diffuse from the bulk solution to the enzyme surface. Then, the molecules diffuse to the cofactor within the active site. The last step is the binding of the molecules. The first substrate molecule binds to the ylide form of the cofactor and the second to the enamine-carbanion intermediate (Demir et al., 2001b; Fig. 2B). Obviously, the only difference between the first and the second binding substrate is the binding to different forms of the cofactor. The diffusion steps are equally fast since the diffusion coefficients
are the same. Assuming also that the binding step is equally fast, the micro-reaction constants k_1 and k_2 will have the same value. The same assumption is made for the micro-reaction constants $k_{1/C0}$ and $k_{2/C0}$ because in this case the same steps occur only in reverse order.

With this assumption only four independent micro-reaction constants remain without neglecting any reaction step. As a result, only four independent parameters can exist. Using the method of Straathof and Heijnen (1996), two more relations between the parameters could be identified (Eqs. 7 and 8), which are added to the kinetic model (Eqs. 2 and 5):

\[
K_{mP} = \frac{K_{mB}(K_{mB} - K_{mA})^2K_{eq}}{2K_{mA}} \quad (7)
\]

\[
K_{iA} = K_{mB} - K_{mA} \quad (8)
\]

Consequently, only four independent parameters, which are listed in Table II, have to be fitted during parameter estimation. It should be noted that the assumptions do not lead to the equality of K_{mA} and K_{mB}.

The modified model has been fitted to the experimental data of the original experiments as described in Table I (experiments A–I). The experimental data together with the fitted progress curves and the residuals are provided in Figure 6. The estimated values are listed in Table III with their 95% confidence regions. Obviously, those parameters can now be estimated much more precisely despite the tight experimental limitations. In Table IV the correlation matrix is presented. The obtained correlations between the kinetic parameters are satisfactory except for the correlation of K_{mA} and K_{mB}.

With Equations (18)–(21) (Appendix A) the micro-reaction constants were calculated. For the error propagation the Gauss formula cannot be used since there are
correlations between the parameters. Therefore, Equation (9) was used instead (Tellinghuisen, 2001)

$$\sigma_k^2 = J^T C J$$ \hspace{1cm} (9)

In Equation (9), σ_k^2 represents the variance in the function for k_i (Eqs. 18–21) containing the model parameters θ_i, whose variance–covariance matrix is C_{ij} (Table V). The Jacobian matrix J contains the partial derivatives of k_i with respect to the model parameters θ_i:

$$J_i = \frac{\partial k_i}{\partial \theta_j}$$ \hspace{1cm} (10)

Consequently, the standard deviation of a micro-reaction constant σ_k can be calculated with the following equation:

$$\sigma_k = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\partial k_i}{\partial \theta_j} \frac{\partial k_i}{\partial \theta_j} C_{ij} \right) \right)^{1/2}$$ \hspace{1cm} (11)

The calculated values for the micro-reaction constants (Table VI) indicate that the release of the product is rate limiting for the synthesis reaction, while the release of the substrates is rate limiting for the reverse reaction.

Despite the fact that the parameter estimation was much more precise, it can be expected that the estimation would be even more precise if the experimental degrees of freedom would not be so limited. Therefore, new in silico experiments (Table I, experiments R–Y) were designed for fitting the simplified model. For the model-based optimal experimental design the same experimental limitations have been used. Once more, the determined optimal experiments have been conducted in silico. The simulated data have been disturbed with white noise with a standard deviation of 0.001 mM and used for a new parameter estimation. The results of this step are presented in Tables III and IVD.

Table III implies that the parameter precision can be increased if the model is fitted to experiments with initial product concentrations. The correlations become slightly lower, but the correlation between K_{ma} and K_{mb} still remains high (Table IVD). Considering the definition of these parameters, the remaining high correlation is not surprising since K_{ma} and K_{mb} both contain the term k_3/k_1 (Table II).

For the simplified model, a new dynamic sensitivity analysis was performed, which is depicted in Figure 5B. As already observed for the basic model (Fig. 5A), the parameters k_{cat} and K_{eq} can be estimated very precisely since they are very sensitive at the start and at the end of the reaction, respectively. The strong correlation of K_{ma} and K_{mb} is caused by the symmetrical sensitivity curves of these parameters. A possible solution for this could be the modeling of the enzyme reaction directly with micro-reaction constants.

Table VI. Calculated micro-reaction constants.

<table>
<thead>
<tr>
<th>Micro-reaction constant</th>
<th>Calculated value</th>
<th>Standard deviation</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{cat}, k_2</td>
<td>3788.90</td>
<td>893.68</td>
<td>mM$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>k_1, k_{-2}</td>
<td>132.54</td>
<td>14.86</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>k_3</td>
<td>45.44</td>
<td>0.35</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>k_{-3}</td>
<td>9355.90</td>
<td>2306.60</td>
<td>mM$^{-1}$ s$^{-1}$</td>
</tr>
</tbody>
</table>

Conclusions

Based on the proposed mechanism for BAL, a kinetic model was derived, which takes all micro-reaction steps into account. In the special case of two identical substrates, two K_m values exist since one substrate acts as a donor and the other as acceptor. The model contains six independent parameters. Four of them cannot be estimated with sufficient accuracy. There are two reasons for this. First, the experimentally accessible region is rather limited due to the low solubility of the product. This can be investigated with the use of in silico experiments, but even under these optimal conditions the model is too complex for estimating all six parameters with high precision. For this reason the model was revised by assuming identical values for k_1 and k_2, and for k_{-1} and k_{-2}. Therefore, only four independent parameters remain, which can be estimated much more accurately, in silico experiments show that under less limited experimental conditions the model parameters can be estimated very precisely. The derived kinetic model could also be applied for other ThDP-dependent enzymes. Most of these enzymes basically follow the same mechanism with the only difference that they are not able to cleave the formed (R)-2-hydroxy ketones. This would result in $k_{-3} = 0$.

Nomenclature

- BAL: benzaldehyde lyase
- BFD: benzoylformate decarboxylase
- DMBA: 3,5-dimethoxy-benzaldehyde
- MEXA: model-based experimental analysis
- PDC: pyruvate decarboxylase
- ThDP: thiamin diphosphate
- TMB: (R)-3,3',5,5'-tetramethoxy-benzoic
- A: concentration of first binding substrate (mM)
- A_0: initial substrate concentration (mM)
B concentration of second binding substrate (mM)
C variance covariance matrix
E enzyme concentration (mM)
J Jacobian matrix
k micro-reaction constant (s⁻¹, (mM⁻¹ s⁻¹)
k_{catf} maximum turnover number (s⁻¹)
k_{catr} maximum turnover number for reverse reaction (s⁻¹)
K_{eq} equilibrium constant (mM⁻¹)
K_{a} inhibition constant for first binding substrate (mM)
K_{ab} inhibition constant for second binding substrate (mM)
K_{ip} inhibition constant for product (mM)
K_{mAB} Michaelis constant for first binding substrate (mM)
K_{mAB} Michaelis constant for second binding substrate (mM)
K_{mP} Michaelis constant for product (mM)
P product concentration (mM)
P_0 initial product concentration (mM)
S normalized sensitivity
σ standard deviation of a micro-reaction constant (s⁻¹), (s⁻¹ mM⁻¹)
θ model parameter (s⁻¹, (mM⁻¹), (mM)
ν reaction rate (mM s⁻¹)

The work was funded by the Deutsche Forschungsgemeinschaft (Bonn, Germany) within the Collaborative Research Center 540 (Model-based Experimental Analysis of Kinetic Phenomena in Fluid Multi-phase Reactive Systems) and GRK 1166 (Bioanalysis using non-conventional media—BioNoCo). The authors thank Lars Regestein for fruitful discussions.

Appendix A

Relationships between micro-reaction constants and kinetic parameters of the simplified kinetic model:

\[k_1 = \frac{k_{catf}}{K_{mA}} \] \hspace{1cm} (12)

\[k_{-1} = \frac{K_{A}k_{catf}}{K_{mA}} \] \hspace{1cm} (13)

\[k_2 = \frac{k_{catf}(K_{mP}K_{A} - K_{mP}K_{mA} + K_{A}^2 K_{mB} K_{eq})}{K_{mB}(K_{A}^2 K_{mB} K_{eq} - K_{mP} K_{mA})} \] \hspace{1cm} (14)

\[k_{-2} = \frac{K_{mB} K_{A} k_{catf}}{K_{mB} K_{eq} - K_{mP} K_{mA}} \] \hspace{1cm} (15)

\[k_3 = k_{catf} \] \hspace{1cm} (16)

\[k_{-3} = \frac{k_{catf}(K_{mP} K_{A} - K_{mP} K_{mA} + K_{A}^2 K_{mB} K_{eq})}{K_{mP} K_{A}^2 K_{mB} K_{eq}} \] \hspace{1cm} (17)

\[k_4 = \frac{k_{catf}(K_{mB} - K_{mA})}{K_{mA}} \] \hspace{1cm} (19)

\[K_{ip} = \frac{k_3}{k_{-3}} = \frac{k_{catf} K_{mP}}{1 - \left(\frac{K_{mB}}{K_{mP}} - 1\right) \frac{K_{mP}}{K_{eq} K_{mB} K_{eq}}} \] \hspace{1cm} (23)

Relationships between micro-reaction constants and kinetic parameters of the mechanistic kinetic model:

\[k_1 = k_2 = \frac{k_{catf}}{K_{mA}} \] \hspace{1cm} (18)

\[k_{-1} = \frac{k_{catf}(K_{mB} - K_{mA})}{K_{mA}} \] \hspace{1cm} (19)

\[k_3 = k_{catf} \] \hspace{1cm} (20)

\[k_{-3} = \frac{k_{catf}}{K_{eq}(K_{mB} - K_{mA})^2} \] \hspace{1cm} (21)

\[k_{cat} = \frac{k_{-1} k_{-2}}{k_1 k_{-3}} = \frac{k_{catf} K_{mP} K_{A}}{K_{mB} K_{eq} K_{mA}} \] \hspace{1cm} (22)

\[K_{ip} = \frac{k_3}{k_{-3}} = \frac{k_{catf} K_{mP}}{1 - \left(\frac{K_{mB}}{K_{mP}} - 1\right) \frac{K_{mP}}{K_{eq} K_{mB} K_{eq}}} \] \hspace{1cm} (23)

References

Your article will be published online via Wiley's EarlyView® service (www.interscience.wiley.com) shortly after receipt of corrections. EarlyView® is Wiley's online publication of individual articles in full text HTML and/or pdf format before release of the compiled print issue of the journal. Articles posted online in EarlyView® are peer-reviewed, copyedited, author corrected, and fully citable via the article DOI (for further information, visit www.doi.org). EarlyView® means you benefit from the best of two worlds—fast online availability as well as traditional, issue-based archiving.

Please follow these instructions to avoid delay of publication.

☐ READ PROOFS CAREFULLY
- This will be your only chance to review these proofs. **Please note that once your corrected article is posted online, it is considered legally published, and cannot be removed from the Web site for further corrections.**
- Please note that the volume and page numbers shown on the proofs are for position only.

☐ ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)
- Mark all corrections directly on the proofs. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

☐ CHECK FIGURES AND TABLES CAREFULLY (Color figure proofs will be sent under separate cover.)
- Check size, numbering, and orientation of figures.
- All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
- Review figure legends to ensure that they are complete.
- Check all tables. Review layout, title, and footnotes.

☐ COMPLETE REPRINT ORDER FORM
- Fill out the attached reprint order form. It is important to return the form even if you are not ordering reprints. You may, if you wish, pay for the reprints with a credit card. Reprints will be mailed only after your article appears in print. This is the most opportune time to order reprints. If you wait until after your article comes off press, the reprints will be considerably more expensive.

RETURN ☐ PROOFS ☐ REPRINT ORDER FORM ☐ CTA (If you have not already signed one)

RETURN IMMEDIATELY AS YOUR ARTICLE WILL BE POSTED ONLINE SHORTLY AFTER RECEIPT;
FAX PROOFS TO 201-748-6825 or 8852

QUESTIONS? Jeffrey Collins, Production Editor
Phone: 201-748-8864
E-mail: jeccollin@wiley.com
Refer to journal acronym and article production number (i.e., BIT 00-001 for Biotechnology and Bioengineering ms 00-001).
Color figures were included with the final manuscript files that we received for your article. Because of the high cost of color printing, we can only print figures in color if authors cover the expense.

Please indicate if you would like your figures to be printed in color or black and white. Color images will be reproduced online in Wiley InterScience at no charge, whether or not you opt for color printing.

You will be invoiced for color charges once the article has been published in print.

Failure to return this form with your article proofs will delay the publication of your article.

BIOTECHNOLOGY AND BIOENGINEERING

<table>
<thead>
<tr>
<th>JOURNAL</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MS. NO.</th>
<th>NO. OF COLOR PAGES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TITLE OF MANUSCRIPT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>AUTHOR(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>No. Color Pages</th>
<th>Color Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>5</td>
<td>2500</td>
<td>9</td>
<td>4500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>6</td>
<td>3000</td>
<td>10</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1500</td>
<td>7</td>
<td>3500</td>
<td>11</td>
<td>5500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>8</td>
<td>4000</td>
<td>12</td>
<td>6000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please contact the Production Editor for a quote if you have more than 12 pages of color

☐ Please print my figures in black and white

☐ Please print my figures in color

☐ Please print the following figures in color:

BILLING ADDRESS:

COPYRIGHT TRANSFER AGREEMENT

Date: []

To: []

Re: Manuscript entitled __ (the “Contribution”)

for publication in __ (the "Journal")

published by Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc. ("Wiley").

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the publishing process and enable Wiley to disseminate your work to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned to us as soon as possible. If the Contribution is not accepted for publication this Agreement shall be null and void.

A. COPYRIGHT

1. The Contributor assigns to Wiley, during the full term of copyright and any extensions or renewals of that term, all copyright in and to the Contribution, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution and the material contained therein in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the Contribution or any material contained therein, in any medium as permitted hereunder, requires a citation to the Journal and an appropriate credit to Wiley as Publisher, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue Copyright © [year] Wiley-Liss, Inc. or copyright owner as specified in the Journal.)

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution, and the right to make oral presentations of material from the Contribution.

C. OTHER RIGHTS OF CONTRIBUTOR

Wiley grants back to the Contributor the following:

1. The right to share with colleagues print or electronic "preprints" of the unpublished Contribution, in form and content as accepted by Wiley for publication in the Journal. Such preprints may be posted as electronic files on the Contributor's own website for personal or professional use, or on the Contributor's internal university or corporate networks/intranet, or secure external website at the Contributor’s institution, but not for commercial sale or for any systematic external distribution by a third party (e.g., a listserve or database connected to a public access server). Prior to publication, the Contributor must include the following notice on the preprint: "This is a preprint of an article accepted for publication in [Journal title] © copyright (year) (copyright owner as specified in the Journal)". After publication of the Contribution by Wiley, the preprint notice should be amended to read as follows: "This is a preprint of an article published in [include the complete citation information for the final version of the Contribution as published in the print edition of the Journal]", and should provide an electronic link to the Journal's WWW site, located at the following Wiley URL: http://www.interscience.Wiley.com/. The Contributor agrees not to update the preprint or replace it with the published version of the Contribution.
2. The right, without charge, to photocopy or to transmit online or to download, print out and distribute to a colleague a copy of the published Contribution in whole or in part, for the Contributor's personal or professional use, for the advancement of scholarly or scientific research or study, or for corporate informational purposes in accordance with Paragraph D.2 below.

3. The right to republish, without charge, in print format, all or part of the material from the published Contribution in a book written or edited by the Contributor.

4. The right to use selected figures and tables, and selected text (up to 250 words, exclusive of the abstract) from the Contribution, for the Contributor's own teaching purposes, or for incorporation within another work by the Contributor that is made part of an edited work published (in print or electronic format) by a third party, or for presentation in electronic format on an internal computer network or external website of the Contributor or the Contributor's employer.

5. The right to include the Contribution in a compilation for classroom use (course packs) to be distributed to students at the Contributor's institution free of charge or to be stored in electronic format in datarooms for access by students at the Contributor's institution as part of their course work (sometimes called "electronic reserve rooms") and for in-house training programs at the Contributor's employer.

D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor’s signature), in the space provided below. In such case, the company/employer hereby assigns to Wiley, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the published Contribution internally in print format or electronically on the Company's internal network. Upon payment of the Publisher's reprint fee, the institution may distribute (but not resell) print copies of the published Contribution externally. Although copies so made shall not be available for individual re-sale, they may be included by the company/employer as part of an information package included with software or other products offered for sale or license. Posting of the published Contribution by the institution on a public access website may only be done with Wiley's written permission, and payment of any applicable fee(s).

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires. (U.S. Government Employees: see note at end).

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley.

G. CONTRIBUTOR'S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor's original work. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before, except for "preprints" as permitted above. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe on the rights or privacy of others, or contain material or instructions that might cause harm or injury.
CHECK ONE:

[____]Contributor-owned work

Contributor's signature

Date

Type or print name and title

Co-contributor's signature

Date

Type or print name and title

ATTACH ADDITIONAL SIGNATURE PAGE AS NECESSARY

[____]Company/Institution-owned work

(made-for-hire in the course of employment)

Company or Institution (Employer-for-Hire)

Date

Authorized signature of Employer

Date

[____]U.S. Government work

Note to U.S. Government Employees

A Contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication is called a "U.S. Government work," and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

[____]U.K. Government work (Crown Copyright)

Note to U.K. Government Employees

The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. In such case, the Publisher will forward the relevant form to the Employee for signature.
Dear Mr. Jeffrey

Attached please find corrections to ms# ___________. Please contact me should you have any difficulty reading this fax at the numbers listed below.

Office phone:
Email:
Fax:
Lab phone:

I will return color figure proofs (if applicable) once I have checked them for accuracy.

Thank you,

Dr.

E-proofing feedback comments:
Please complete this form even if you are not ordering reprints. This form MUST be returned with your corrected proofs and original manuscript. Your reprints will be shipped approximately 4 weeks after publication. Reprints ordered after printing will be substantially more expensive. **25 Reprints will be supplied free of charge.

**REPRINTS ARE ONLY AVAILABLE IN LOTS OF 100. IF YOU WISH TO ORDER MORE THAN 500 REPRINTS, PLEASE CONTACT OUR REPRINTS DEPARTMENT AT (201) 748-8789 FOR A PRICE QUOTE.

<table>
<thead>
<tr>
<th>No. of Pages</th>
<th>100 Reprints</th>
<th>200 Reprints</th>
<th>300 Reprints</th>
<th>400 Reprints</th>
<th>500 Reprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>336</td>
<td>501</td>
<td>694</td>
<td>890</td>
<td>1052</td>
</tr>
<tr>
<td>5-8</td>
<td>469</td>
<td>703</td>
<td>987</td>
<td>1251</td>
<td>1477</td>
</tr>
<tr>
<td>9-12</td>
<td>594</td>
<td>923</td>
<td>1234</td>
<td>1565</td>
<td>1850</td>
</tr>
<tr>
<td>13-16</td>
<td>714</td>
<td>1156</td>
<td>1527</td>
<td>1901</td>
<td>2273</td>
</tr>
<tr>
<td>17-20</td>
<td>794</td>
<td>1340</td>
<td>1775</td>
<td>2212</td>
<td>2648</td>
</tr>
<tr>
<td>21-24</td>
<td>911</td>
<td>1529</td>
<td>2031</td>
<td>2536</td>
<td>3037</td>
</tr>
<tr>
<td>25-28</td>
<td>1004</td>
<td>1707</td>
<td>2267</td>
<td>2828</td>
<td>3388</td>
</tr>
<tr>
<td>29-32</td>
<td>1108</td>
<td>1894</td>
<td>2515</td>
<td>3135</td>
<td>3755</td>
</tr>
<tr>
<td>33-36</td>
<td>1219</td>
<td>2092</td>
<td>2773</td>
<td>3456</td>
<td>4143</td>
</tr>
<tr>
<td>37-40</td>
<td>1329</td>
<td>2290</td>
<td>3033</td>
<td>3776</td>
<td>4528</td>
</tr>
</tbody>
</table>

International orders must be paid in currency and drawn on a U.S. bank.

Please check one: ☐ Check enclosed ☐ Bill me ☐ Credit Card
☐ American Express ☐ Visa ☐ MasterCard

TOTAL AMOUNT OF ORDER

Please send me ______________ reprints of the above article at $______________

Please add appropriate State and Local Tax (Tax Exempt No.______________) $______________

Please add 5% Postage and Handling $______________

Please send me ______________ reprints of the above article at $______________

TOTAL AMOUNT OF ORDER

$______________

BIL TO: Name __________________________ Signature __________________________ Exp. Date ______________

Institution __________________________

Address __________________________

SHI TO: Name __________________________

Institution __________________________

Address __________________________

Purchase Order No. __________________________

Phone __________________________

Fax __________________________

E-mail __________________________
Acrobat annotation tools can be very useful for indicating changes to the PDF proof of your article. By using Acrobat annotation tools, a full digital pathway can be maintained for your page proofs.

The NOTES annotation tool can be used with either Adobe Acrobat 4.0, 5.0 or 6.0. Other annotation tools are also available in Acrobat 4.0, but this instruction sheet will concentrate on how to use the NOTES tool. Acrobat Reader, the free Internet download software from Adobe, DOES NOT contain the NOTES tool. In order to softproof using the NOTES tool you must have the full software suite Adobe Acrobat 4.0, 5.0 or 6.0 installed on your computer.

Steps for Softproofing using Adobe Acrobat NOTES tool:

1. Open the PDF page proof of your article using either Adobe Acrobat 4.0, 5.0 or 6.0. Proof your article on-screen or print a copy for markup of changes.

2. Go to File/Preferences/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0) and enter your name into the “default user” or “author” field. Also, set the font size at 9 or 10 point.

3. When you have decided on the corrections to your article, select the NOTES tool from the Acrobat toolbox and click in the margin next to the text to be changed.

4. Enter your corrections into the NOTES text box window. Be sure to clearly indicate where the correction is to be placed and what text it will effect. If necessary to avoid confusion, you can use your TEXT SELECTION tool to copy the text to be corrected and paste it into the NOTES text box window. At this point, you can type the corrections directly into the NOTES text box window. **DO NOT correct the text by typing directly on the PDF page.**

5. Go through your entire article using the NOTES tool as described in Step 4.

6. When you have completed the corrections to your article, go to File/Export/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0).

7. **When closing your article PDF be sure NOT to save changes to original file.**

8. To make changes to a NOTES file you have exported, simply re-open the original PDF proof file, go to File/Import/Notes and import the NOTES file you saved. Make changes and re-export NOTES file keeping the same file name.

9. When complete, attach your NOTES file to a reply e-mail message. Be sure to include your name, the date, and the title of the journal your article will be printed in.