A Hybridized DG / Mixed Method For Nonlinear Convection-Diffusion Problems

Aravind Balan, Michael Woopen, Jochen Schütz and Georg May

AICES Graduate School, RWTH Aachen University, Germany

WCCM 2012, São Paulo, Brazil

July 9, 2012
Outline

1. Introduction
2. BDM Mixed Method for Diffusion
3. Hybridized BDM Mixed Method for Diffusion
4. Hybridized DG-BDM (HDG-BDM) for Advection-Diffusion
5. Hybridized DG (HDG) for Advection-Diffusion
6. Numerical Results
Background

- HDG-BDM method for Advection-Diffusion equations.

\[\nabla \cdot (f(u) - f_v(u, \nabla u)) = 0 \]

Background

- HDG-BDM method for Advection-Diffusion equations.

\[\nabla \cdot \left(f(u) - f_v(u, \nabla u) \right) = 0 \]

- Discontinuous Galerkin for Advection; known to work well

\[\nabla \cdot f(u) = 0 \]

Background

- HDG-BDM method for Advection-Diffusion equations.

\[\nabla \cdot (f(u) - f_v(u, \nabla u)) = 0 \]

- Discontinuous Galerkin for Advection; known to work well

\[\nabla \cdot f(u) = 0 \]

- BDM Mixed method for Diffusion; known to work well

\[\nabla \cdot f_v(u, \sigma) = 0 \quad \sigma = \nabla u \]

\[\text{Hybridization to reduce the global coupled degrees of freedom} \]

\[\lambda \approx u|_{\Gamma} \]

Background

- HDG-BDM method for Advection-Diffusion equations.

\[\nabla \cdot (f(u) - f_v(u, \nabla u)) = 0 \]

- Discontinuous Galerkin for Advection; known to work well

\[\nabla \cdot f(u) = 0 \]

- BDM Mixed method for Diffusion; known to work well

\[\nabla \cdot f_v(u, \sigma) = 0 \quad \sigma = \nabla u \]

- Hybridization to reduce the global coupled degrees of freedom

\[\lambda \approx u|_\Gamma \]

Background

- HDG-BDM method for Advection-Diffusion equations.
 \[
 \nabla \cdot (f(u) - f_v(u, \nabla u)) = 0
 \]

- Discontinuous Galerkin for Advection; known to work well
 \[
 \nabla \cdot f(u) = 0
 \]

- BDM Mixed method for Diffusion; known to work well
 \[
 \nabla \cdot f_v(u, \sigma) = 0 \quad \sigma = \nabla u
 \]

- Hybridization to reduce the global coupled degrees of freedom
 \[
 \lambda \approx u|_\Gamma
 \]

- Linear case: Proposed by H. Egger and J. Schöberl \(^1\)

Background

- HDG-BDM method for Advection-Diffusion equations.

\[\nabla \cdot \left(f(u) - f_v(u, \nabla u)\right) = 0 \]

- Discontinuous Galerkin for Advection; known to work well

\[\nabla \cdot f(u) = 0 \]

- BDM Mixed method for Diffusion; known to work well

\[\nabla \cdot f_v(u, \sigma) = 0 \quad \sigma = \nabla u \]

- Hybridization to reduce the global coupled degrees of freedom

\[\lambda \approx u|_\Gamma \]

- Linear case: Proposed by H. Egger and J. Schöberl \(^1\)

- Non-Linear case: Proposed by J. Schütz and G. May (Promising results for N-S equations \(^2\))

Features of the HDG-BDM scheme

- Reduces to DG for pure advection, to BDM mixed for pure diffusion

Features of the HDG-BDM scheme

- Reduces to DG for pure advection, to BDM mixed for pure diffusion
- No additional parameter in the intermediate range

Features of the HDG-BDM scheme

- Reduces to DG for pure advection, to BDM mixed for pure diffusion
- No additional parameter in the intermediate range
- Using local solvers\(^3\) to make it a system for \(\lambda\)

\(^3\) B. Cockburn and J. Gopalakrishnan. SIAM Journal of Num. Analysis. 42, 283-301, 2004

\(^4\) N. C. Nguyen, J. Peraire, and B. Cockburn, J. Comp. Physics, 228, 8841-8855, 2009
Features of the HDG-BDM scheme

- Reduces to DG for pure advection, to BDM mixed for pure diffusion
- No additional parameter in the intermediate range
- Using local solvers\(^3\) to make it a system for \(\lambda\)
- Solution can be post-processed to get better convergence

\(^3\) B. Cockburn and J. Gopalakrishnan. SIAM Journal of Num. Analysis. 42, 283-301, 2004
\(^4\) N. C. Nguyen, J. Peraire, and B. Cockburn, J. Comp. Physics, 228, 8841-8855, 2009
Features of the HDG-BDM scheme

- Reduces to DG for pure advection, to BDM mixed for pure diffusion
- No additional parameter in the intermediate range
- Using local solvers\(^3\) to make it a system for \(\lambda\)
- Solution can be post-processed to get better convergence
- It can be easily modified to the well known Hybridized Discontinuous Galerkin (HDG) scheme \(^4\)

\(^3\)B. Cockburn and J. Gopalakrishnan. SIAM Journal of Num. Analysis. 42, 283-301, 2004
\(^4\)N. C. Nguyen, J. Peraire, and B. Cockburn, J. Comp. Physics, 228, 8841-8855, 2009
Features of the HDG-BDM scheme

- Reduces to DG for pure advection, to BDM mixed for pure diffusion
- No additional parameter in the intermediate range
- Using local solvers\(^3\) to make it a system for \(\lambda\)
- Solution can be post-processed to get better convergence
- It can be easily modified to the well known Hybridized Discontinuous Galerkin (HDG) scheme\(^4\)
- It can be even mixed with the HDG scheme due to hybridization.

\(^3\) B. Cockburn and J. Gopalakrishnan. SIAM Journal of Num. Analysis. 42, 283-301, 2004

\(^4\) N. C. Nguyen, J. Peraire, and B. Cockburn, J. Comp. Physics, 228, 8841-8855, 2009
Consider Laplace equation

\[-\nabla \cdot \nabla u = S \quad \text{in} \quad \Omega\]
\[u = g \quad \text{in} \quad \partial \Omega\]
Consider Laplace equation
\[-\nabla \cdot \nabla u = S \quad \text{in} \quad \Omega\]
\[u = g \quad \text{in} \quad \partial \Omega\]

Introducing new variable, \(\sigma = \nabla u \)
Consider Laplace equation

\[-\nabla \cdot \nabla u = S \quad \text{in} \quad \Omega\]

\[u = g \quad \text{in} \quad \partial \Omega\]

Introducing new variable, \(\sigma = \nabla u \)

\[\sigma = \nabla u \quad \text{in} \quad \Omega\]

\[-\nabla \cdot \sigma = S \quad \text{in} \quad \Omega\]

\[u = g \quad \text{in} \quad \partial \Omega\]
Consider Laplace equation
\[-\nabla \cdot \nabla u = S \quad \text{in} \quad \Omega\]
\[u = g \quad \text{in} \quad \partial \Omega\]

Introducing new variable, \(\sigma = \nabla u \)
\[\sigma = \nabla u \quad \text{in} \quad \Omega\]
\[-\nabla \cdot \sigma = S \quad \text{in} \quad \Omega\]
\[u = g \quad \text{in} \quad \partial \Omega\]

The solution spaces : \(u_h \in V_h, \sigma_h \in \tilde{H}_h \)
Consider Laplace equation

\[-\nabla \cdot \nabla u = S \quad in \ \Omega\]

\[u = g \quad in \ \partial \Omega\]

Introducing new variable, \(\sigma = \nabla u\)

\[\sigma = \nabla u \quad in \ \Omega\]

\[-\nabla \cdot \sigma = S \quad in \ \Omega\]

\[u = g \quad in \ \partial \Omega\]

The solution spaces : \(u_h \in V_h, \sigma_h \in \tilde{H}_h\)

\[V_h := \{ \varphi \in L^2(\Omega) : \varphi|_{\Omega_k} \in P^{m-1}(\Omega_k) \}\]
Consider Laplace equation
\[
-\nabla \cdot \nabla u = S \quad \text{in} \quad \Omega \\
u = g \quad \text{in} \quad \partial \Omega
\]

Introducing new variable, \(\sigma = \nabla u \)
\[
\sigma = \nabla u \quad \text{in} \quad \Omega \\
-\nabla \cdot \sigma = S \quad \text{in} \quad \Omega \\
u = g \quad \text{in} \quad \partial \Omega
\]

The solution spaces :
\(u_h \in V_h, \sigma_h \in \tilde{H}_h \)
\[
V_h := \{ \varphi \in L^2(\Omega) : \varphi|_{\Omega_k} \in P^{m-1}(\Omega_k) \} \\
\tilde{H}_h := \{ \tau \in H(div, \Omega) : \tau|_{\Omega_k} \in P^m(\Omega_k) \times P^m(\Omega_k) \}
\]
BDM Mixed Method for Diffusion

Consider Laplace equation

\[-\nabla \cdot \nabla u = S \quad \text{in} \quad \Omega \]
\[u = g \quad \text{in} \quad \partial\Omega\]

Introducing new variable, \(\sigma = \nabla u\)

\[\sigma = \nabla u \quad \text{in} \quad \Omega \]
\[-\nabla \cdot \sigma = S \quad \text{in} \quad \Omega \]
\[u = g \quad \text{in} \quad \partial\Omega\]

The solution spaces : \(u_h \in V_h, \sigma_h \in \tilde{H}_h\)

\[V_h := \{\varphi \in L^2(\Omega) : \varphi|_{\Omega_k} \in P^{m-1}(\Omega_k)\}\]
\[\tilde{H}_h := \{\tau \in H(div, \Omega) : \tau|_{\Omega_k} \in P^m(\Omega_k) \times P^m(\Omega_k)\}\]

BDM Mixed method

\[\int_{\Omega} \sigma_h \cdot \tau + \int_{\Omega} (\nabla \cdot \tau) u_h - \int_{\partial\Omega} (\tau \cdot n) g = 0 \quad \forall \tau \in \tilde{H}_h\]
\[-\int_{\Omega} \nabla \cdot \sigma_h \varphi = \int_{\Omega} S \varphi \quad \forall \varphi \in V_h\]
The solution spaces: \(u_h \in V_h, \sigma_h \in H_h, \lambda_h \in M_h \)

\[
V_h := \{ \varphi \in L^2(\Omega) : \varphi|_{\Omega_k} \in P^{m-1}(\Omega_k) \}
\]

\[
H_h := \{ \tau \in L^2(\Omega) \times L^2(\Omega) : \tau|_{\Omega_k} \in P^m(\Omega_k) \times P^m(\Omega_k) \}
\]

\[
M_h := \{ \mu \in L^2(\Gamma) : \mu|_{\Gamma_k} \in P^m(\Gamma_k) \}
\]
Hybridizing...

The solution spaces: \(u_h \in V_h, \sigma_h \in H_h, \lambda_h \in M_h \)

\[
\begin{align*}
V_h &:= \{ \varphi \in L^2(\Omega) : \varphi|_{\Omega_k} \in P^{m-1}(\Omega_k) \} \\
H_h &:= \{ \tau \in L^2(\Omega) \times L^2(\Omega) : \tau|_{\Omega_k} \in P^m(\Omega_k) \times P^m(\Omega_k) \} \\
M_h &:= \{ \mu \in L^2(\Gamma) : \mu|_{\Gamma_k} \in P^m(\Gamma_k) \}
\end{align*}
\]

Hyb. BDM mixed method

\[
\begin{align*}
\sum_k \int_{\Omega_k} \sigma_h \cdot \tau + \int_{\Omega_k} (\nabla \cdot \tau) u_h - \int_{\partial \Omega_k} (\tau \cdot n) \lambda_h &= 0 & \forall \tau \in H_h \\
- \sum_k \int_{\Omega_k} (\nabla \cdot \sigma_h) \varphi &= \sum_k \int_{\Omega_k} S \varphi & \forall \varphi \in V_h \\
\sum_k \int_{\partial \Omega_k} -(\sigma_h \cdot n) \mu &= 0 & \forall \mu \in M_h
\end{align*}
\]
Advection-Diffusion equation

$$\nabla \cdot f(u) - \epsilon \nabla \cdot \nabla u = S$$
Adding DG for Advection

Advection-Diffusion equation

\[\nabla \cdot f(u) - \epsilon \nabla \cdot \nabla u = S \]

HDG-BDM method

\[
\sum_k \int_{\Omega_k} \epsilon^{-1} \sigma_h \cdot \tau + \int_{\Omega_k} (\nabla \cdot \tau) u_h - \int_{\partial \Omega_k} (\tau \cdot n) \lambda_h = 0
\]

\[
\sum_k \int_{\Omega_k} -f(u_h) \cdot \nabla \varphi + \int_{\Gamma_k} \varphi (f(\lambda_h) \cdot n - \alpha(\lambda_h - u_h)) - \int_{\Omega_k} (\nabla \cdot \sigma_h) \varphi
\]

\[
= \sum_k \int_{\Omega_k} S \varphi
\]

\[
\sum_k \int_{\partial \Omega_k} (-\sigma_h \cdot n + f(\lambda_h) \cdot n - \alpha(\lambda_h - u_h)) \mu = 0
\]
Hybridized DG

Proposed by Nguyen et. al \(^5\)

The solution spaces: \(u_h \in \tilde{V}_h, \sigma_h \in H_h, \lambda_h \in M_h\)

\[
\tilde{V}_h := \{ \varphi \in L^2(\Omega) : \varphi|_{\Omega_k} \in P^m(\Omega_k) \}
\]

\(^5\) N. C. Nguyen, J. Peraire, and B. Cockburn, J. Comp. Physics, 228, 8841-8855, 2009
Hybridized DG

Proposed by Nguyen et. al

The solution spaces: \(u_h \in \tilde{V}_h, \sigma_h \in H_h, \lambda_h \in M_h \)

\[\tilde{V}_h := \{ \varphi \in L^2(\Omega) : \varphi|_{\Omega_k} \in P^m(\Omega_k) \} \]

HDG method

\[
\sum_k \int_{\Omega_k} \epsilon^{-1} \sigma_h \cdot \tau + \int_{\Omega_k} (\nabla \cdot \tau) u_h - \int_{\partial \Omega_k} (\tau \cdot n) \lambda_h = 0
\]

\[
\sum_k \int_{\Omega_k} -f(u_h) \cdot \nabla \varphi + \int_{\Gamma_k} \varphi (f(\lambda_h) \cdot n - \beta(\lambda_h - u_h)) - \int_{\Omega_k} (\nabla \cdot \sigma_h) \varphi = \sum_k \int_{\Omega_k} S\varphi
\]

\[
\sum_k \int_{\partial \Omega_k} (-\sigma_h \cdot n + f(\lambda_h) \cdot n - \beta(\lambda_h - u_h)) \mu = 0
\]

\(^5\) N. C. Nguyen, J. Peraire, and B. Cockburn, J. Comp. Physics, 228, 8841-8855, 2009
<table>
<thead>
<tr>
<th>HDG-BDM</th>
<th>HDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_h</td>
<td>_{\Omega_k} \in P^{m-1}$</td>
</tr>
<tr>
<td>$-\sigma_h + \hat{f}_h = -\sigma_h + f(\lambda_h) - \alpha(\lambda_h - u_h)n$</td>
<td>$-\sigma_h + \hat{f}_h = -\sigma_h + f(\lambda_h) - \beta(\lambda_h - u_h)n$</td>
</tr>
</tbody>
</table>
Comparison

HDG-BDM

\[u_h|_{\Omega_k} \in P^{m-1} \]
\[-\sigma_h + \hat{f}_h = -\sigma_h + f(\lambda_h) - \alpha(\lambda_h - u_h)n \]

HDG

\[u_h|_{\Omega_k} \in P^m \]
\[-\hat{\sigma}_h + \hat{f}_h = -\sigma_h + f(\lambda_h) - \beta(\lambda_h - u_h)n \]

Common method

\[
\sum_k \int_{\Omega_k} \epsilon^{-1} \sigma_h \cdot \tau + \int_{\Omega_k} (\nabla \cdot \tau)u_h - \int_{\partial \Omega_k} (\tau \cdot n)\lambda_h = 0
\]
\[
\sum_k \int_{\Omega_k} -f(u_h) \cdot \nabla \varphi + \int_{\Gamma_k} \varphi (f(\lambda_h) \cdot n - (\alpha|\beta)(\lambda_h - u_h)) - \int_{\Omega_k} (\nabla \cdot \sigma_h)\varphi
\]
\[
= \sum_k \int_{\Omega_k} S\varphi
\]
\[
\sum_k \int_{\partial \Omega_k} (-\sigma_h \cdot n + f(\lambda_h) \cdot n - (\alpha|\beta)(\lambda_h - u_h))\mu = 0
\]
Post processing of the solution \(^6\)

<table>
<thead>
<tr>
<th></th>
<th>HDG-RT</th>
<th>HDG-BDM</th>
<th>HDG (^7)</th>
<th>Post Proc. Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_h)</td>
<td>(P^m)</td>
<td>(P^{m-1})</td>
<td>(P^m)</td>
<td>(m + 2)</td>
</tr>
<tr>
<td>(\sigma_h)</td>
<td>(RT^m)</td>
<td>(P^m)</td>
<td>(P^m)</td>
<td>(m + 1)</td>
</tr>
</tbody>
</table>

\(^7\) N. C. Nguyen, J. Peraire, and B. Cockburn, J. Comp. Physics, 228, 8841-8855, 2009

Post processing of the solution \(^6\)

<table>
<thead>
<tr>
<th></th>
<th>HDG-RT</th>
<th>HDG-BDM</th>
<th>HDG (^7)</th>
<th>Post Proc. Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_h)</td>
<td>(P^m)</td>
<td>(P^{m-1})</td>
<td>(P^m)</td>
<td>(m + 2)</td>
</tr>
<tr>
<td>(\sigma_h)</td>
<td>(RT^m)</td>
<td>(P^m)</td>
<td>(P^m)</td>
<td>(m + 1)</td>
</tr>
</tbody>
</table>

Same convergence of post-processed solution under optimal conditions.

\(^7\) N. C. Nguyen, J. Peraire, and B. Cockburn, J. Comp. Physics, 228, 8841-8855, 2009

Post processing of the solution \(^6\)

<table>
<thead>
<tr>
<th></th>
<th>HDG-RT</th>
<th>HDG-BDM</th>
<th>HDG (^7)</th>
<th>Post Proc. Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_h)</td>
<td>(P^m)</td>
<td>(P^{m-1})</td>
<td>(P^m)</td>
<td>(m + 2)</td>
</tr>
<tr>
<td>(\sigma_h)</td>
<td>(RT^m)</td>
<td>(P^m)</td>
<td>(P^m)</td>
<td>(m + 1)</td>
</tr>
</tbody>
</table>

Same convergence of post-processed solution under optimal conditions.

For HDG-BDM and HDG-RT\(^8\), this optimal condition is when diffusion dominates and one can put \(\alpha = 0\)

\(^7\) N. C. Nguyen, J. Peraire, and B. Cockburn, J. Comp. Physics, 228, 8841-8855, 2009
Test case 1: Boundary Layer

Two dimensional viscous Burgers equation

\[
\frac{1}{2} \nabla \cdot (u^2, u^2) - \epsilon \nabla \cdot \nabla u = S \quad \text{in } \Omega
\]

\[
u = 0 \quad \text{in } \partial \Omega
\]

Solution:

\[
u(x, y) = \left(x + \frac{e^{c_1 x/\epsilon} - 1}{1 - e^{c_1/\epsilon}} \right) \cdot \left(y + \frac{e^{c_1 y/\epsilon} - 1}{1 - e^{c_1/\epsilon}} \right)
\]
Test case 1 : Boundary Layer

Figure: Contours of $u, m = 2 (u \in P^1), \epsilon = 0.1$, HDG-BDM scheme
Test case 1: Boundary Layer

Figure: Contours of u^*, $m = 2$ ($u \in P^1$), $\epsilon = 0.1$, HDG-BDM scheme
Test case 1: Boundary Layer

Figure: Contours of u^*, $m = 2 (u \in P^1)$, $\epsilon = 0.1$, $\alpha = 0$, HDG-BDM scheme
Test case 1: Boundary Layer

Figure: Convergence, $m = 3 \ (u \in P^2), \ \epsilon = 0.1$, HDG-BDM scheme
Test case 2: Linear Boundary Layer

Mixing HDG and HDG-BDM methods:

Condition: If Peclet number, $Pe = \frac{|c|h}{\epsilon} < 5$, then use HDG-BDM
Test case 2: Linear Boundary Layer

Mixing HDG and HDG-BDM methods:

Condition: If Peclet number, \(Pe = \frac{|c| h}{\epsilon} < 5 \), then use HDG-BDM

Contours of \(u^* \), \(m = 2 \), \(\epsilon = 0.01 \)

Red: HDG, Blue: HDG-BDM
Test case 2: Linear Boundary Layer

Convergence of u^*, $m = 2$

Reduction of dofs of u
Test case 3

Advection Diffusion equation:

\[\nabla \cdot u - \nabla \cdot (\epsilon(x) \nabla u) = S \quad \text{in} \quad \Omega \]
\[u = g \quad \text{in} \quad \Gamma_D \]
Test case 3

Advection Diffusion equation:

\[\nabla \cdot u - \nabla \cdot (\epsilon(x) \nabla u) = S \quad \text{in} \quad \Omega \]
\[u = g \quad \text{in} \quad \Gamma_D \]

Diffusion Coefficient:

\[\epsilon = \begin{cases}
0.001, & x \leq 0.9 \\
1, & x \geq 1.1 \\
\text{smooth fn.}, & 0.9 < x < 1.1
\end{cases} \]
Test case 3

Advection Diffusion equation:

\[\nabla \cdot u - \nabla \cdot (\epsilon(x) \nabla u) = S \quad \text{in} \quad \Omega \]
\[u = g \quad \text{in} \quad \Gamma_D \]

Diffusion Coefficient:

\[\epsilon = \begin{cases}
0.001, & x \leq 0.9 \\
1, & x \geq 1.1 \\
\text{smooth fn.,} & 0.9 < x < 1.1
\end{cases} \]

Solution:

\[u(x, y) = (1 - \epsilon(x)) \sin(x - y) + \epsilon(x) \sin(2\pi x) \sin(2\pi y) \]
Test case 3

Condition: $x > 1.2$, use HDG-BDM

Figure: Red: HDG, Blue: HDG-BDM

Figure: Contours of u^*, $m = 2$
Test case 3

Condition: $x > 1.2$, use HDG-BDM

Figure: Convergence of u^*, $m = 2$
Test case 3

Condition: $Pe < 5$, use HDG-BDM

Figure: Red: HDG, Blue: HDG-BDM

Figure: Contours of u^*, $m = 2$
Test case 3

Condition: $Pe < 5$, use HDG-BDM

Figure: Convergence of u^*, $m = 2$
Conclusions

Present work:
- HDG-BDM method and its connection with HDG scheme

Future work:
- A robust sensor to determine the region for using HDG-BDM scheme
- Shock capturing
- Extending to Navier-Stokes equations
Conclusions

Present work:
- HDG-BDM method and its connection with HDG scheme
- Mixing of the two methods;
 - HDG as base scheme and HDG-BDM in diffusion dominated region
 - Cell peclet number as sensor

Future work:
- A robust sensor to determine the region for using HDG-BDM scheme
- Shock capturing
- Extending to Navier-Stokes equations
Conclusions

Present work:
- HDG-BDM method and its connection with HDG scheme
- Mixing of the two methods;
 HDG as base scheme and HDG-BDM in diffusion dominated region
 Cell peclet number as sensor

Future work:
- A robust sensor to determine the region for using HDG-BDM scheme
Conclusions

Present work:
- HDG-BDM method and it's connection with HDG scheme
- Mixing of the two methods;
 - HDG as base scheme and HDG-BDM in diffusion dominated region
 - Cell peclet number as sensor

Future work:
- A robust sensor to determine the region for using HDG-BDM scheme
- Shock capturing
Conclusions

Present work:
- HDG-BDM method and its connection with HDG scheme
- Mixing of the two methods;
 HDG as base scheme and HDG-BDM in diffusion dominated region
- Cell peclet number as sensor

Future work:
- A robust sensor to determine the region for using HDG-BDM scheme
- Shock capturing
- Extending to Navier-Stokes equations
Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through grant GSC 111 is gratefully acknowledged.
Cell-wise discretization of the Neumann problem:

\[
\epsilon(\nabla u_h^*, \nabla \phi) = (\sigma_h, \nabla \phi) \quad \forall \phi \in P_0^q(\Omega_k)
\]

\[
(u_h, 1) = (u_h^*, 1)
\]

where

\[
P_0^q(\Omega_k) := \{ \phi \in P^q(\Omega_k), (\phi, 1) = 0 \}
\]

with \(q = m + 1 \) for HDG and HDG-BDM \((\alpha = 0)\) and \(q = m \) for HDG-BDM \((\alpha \neq 0)\).
\[\epsilon = e^{(-9 + 10x)^{-2}} (e^{(-9 + 10x)^{-2}} + e^{(-11 + 10x)^{-2}}) - 1 \]
Test case 1: Boundary Layer

Figure: Convergence, \(m = 3 \) (\(u \in P^3 \)), \(\epsilon = 0.1 \), HDG scheme
Test case 1: Boundary Layer

Figure: Convergence, \(m = 3, \epsilon = 0.1 \), HDG \((u \in P^3) \) and HDG-BDM \((u \in P^2) \) schemes