Events

EU Regional School - Fröhlich Seminar

Location: AICES Seminar Room 115, 1st floor, Schinkelstr. 2, 52062 Aachen

Prof. Dr. Holger Fröhlich - From Hype to Reality: Data Science Enabling Innovation in Biomedicine

Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Germany

Abstract

Recent years have witnessed a dramatic increase of interest in Data Science and Artificial Intelligence in biomedical and pharmaceutical research. This increasing interest is accompanied by an often uncritical and hype generating debate in the main stream media, which is driven by a lack of understanding, hence pointing out the necessity for better education.

My talk will be divided into two parts: In the first part I want clarify terminology and give a general introduction into Data Science by briefly explaining some of the commonly used concepts. The second part will focus on the impact of Data Science in biomedical research. In particular, I want to demonstrate this connection by selected examples from own work. I will conclude my talk by reflecting on the strength and limitations of data driven modeling approaches and how future developments may help to overcome them.

EU Regional School - Reali Seminar

Location: AICES Seminar Room 115, 1st floor, Schinkelstr. 2, 52062 Aachen

Prof. Alessandro Reali, Ph.D. - Isogeometric Analysis: An Introduction and Some Recent Advances

Department of Civil Engineering and Architecture - Structures and Materials Section, University of Pavia, Italy

Abstract

Isogeometric Analysis (IGA) is a recent simulation framework, originally proposed by T.J.R. Hughes and coworkers in 2005, to bridge the gap between Computational Mechanics and Computer Aided Design (CAD). The basic IGA paradigm consists of adopting the same basis functions used for geometry representations in CAD systems - such as, e.g., Non-Uniform Rational B-Splines (NURBS) - for the approximation of field variables, in an isoparametric fashion. This leads to a cost-saving simplification of the typically expensive mesh generation and refinement processes required by standard finite element analysis. In addition, thanks to the high-regularity properties of its basis functions, IGA has shown a better accuracy per-degree-of-freedom and an enhanced robustness with respect to standard finite elements in a number of applications ranging from solids and structures to fluids, opening also the door to geometrically flexible discretizations of higher-order partial differential equations in primal form, as well as to highly efficient (strong-form) collocation methods.
The first part of this short course is devoted to the introduction of the basic concepts of IGA (including a brief primer on B-Splines and NURBS). The unique potential of IGA is then shown through some convincing applications, mainly belonging to the field of structural mechanics and of fluid-structure interaction, where the superior results that can be provided by IGA with respect to standard finite elements are clearly pointed out. 
The lecture is finally concluded by a brief presentation of further IGA works in progress and new ideas.

EU Regional School - De Lorenzis Seminar

Location: AICES Seminar Room 115, 1st floor, Schinkelstr. 2, 52062 Aachen

Prof. Dr. Laura De Lorenzis - Phase-Field Modeling and Computation of Fracture

Institute of Applied Mechanics, Technische Universität Braunschweig, Germany

Abstract

The phase-field modeling approach to fracture, after the pioneering investigations of the early 2000 in the mathematics community, has recently attracted a tremendous interest also in the engineering community due to its theoretical soundness, computational flexibility and demonstrated predictive power. In the talk, we review the basic ingredients of the classical phase-field model of brittle fracture and highlight the consequences of different modeling choices on the predicted behavior. We then illustrate the basic features of phase-field models for ductile fracture and finally overview the latest extensions and applications of the framework.

 

SSD - Berre Seminar

Location: AICES Seminar Room 115, 1st floor, Schinkelstr. 2, 52062 Aachen

Prof. Dr. Inga Berre - Three-Dimensional Numerical Modelling of Hydraulic Stimulation of Geothermal Reservoirs: Permeability Enhancement and Induced Seismicity

Department of Mathematics, University of Bergen, Norway

Abstract

Understanding the controlling mechanisms underlying injection‐induced seismicity is important for optimizing reservoir productivity and addressing seismicity‐related concerns related to hydraulic stimulation in Enhanced Geothermal Systems as well as other sub-surface engineering applications. Hydraulic stimulation enhances permeability through elevated pressures, which cause normal deformations and the shear slip of preexisting fractures.

The process involves strongly coupled physical processes, involving reactivation and deformation of fractures, deformation of surrounding rock, and fluid flow in the fractures and their surroundings. The talk presents an approach for modelling of the governing flow and mechanics, where fractures are modelled as surfaces with associated apertures in a three-dimensional domain. Considering both flow and deformation, processes in the fractures are coupled with processes in the surrounding rock. While flow is assumed to be governed by Darcy’s law both in the fractures and the matrix, the model for deformation is inherently different for the fractured and non-fractured parts of the domain. Fracture reactivation is based on a Mohr-Coulomb criterion, and the corresponding irreversible deformation is based on an empirical model for friction.
Furthermore, fractures may continuously deform in the normal direction according to a non-linear model accounting for the normal loading. For the rock surrounding the matrix, we assume a continuous elastic deformation. Numerical results are presented to show how the methodology can be applied to understand important mechanisms affecting permeability and induced seismicity. In particular, we show how normal closure of fractures enhances pressure propagation away from the injection region and significantly increases the potential for postinjection seismicity.

SSD - Kollmannsberger Seminar

Location: AICES Seminar Room 115, 1st floor, Schinkelstr. 2, 52062 Aachen

Dr. Stefan Kollmannsberger - Simulation in Additive Manufacturing with Modern Discretizational Techniques

Chair of Computation in Engineer, Technical University of Munich, Germany

Abstract

The talk will present a general framework for the simulation of (initial) boundary value problems which may be defined on almost any type of geometric model. This framework is the finite cell method, a high order embedded domain method which the presenter has helped to develop in the recent decade.
 
Geometric models which form the basis of computational mechanics often stem from Computer Aided Design (CAD). Two variants dominate in this setting: Constructive Solid Geometry (CSG) and boundary representation (B-Rep). The usual CAD to computational analysis process requires the generation of boundary conforming meshes. These, in turn, require the geometric models to be valid, i.e. water tight and flawless. To the contrary, industrial models are often flawed such that model healing must be carried out before boundary conforming meshes can be generated. This presentation will demonstrate how such a potentially expensive healing step may be avoided and how it is possible to directly compute on geometrically and topologically flawed models.
 
Another type of geometric model are voxel models. They usually stem from computed tomography and are omnipresent, for example in medical applications. Yet, for example for the computation of implants, it is advantageous to augment voxel models by B-Rep models using CSG operations. The talk will discuss how computational analysis is possible on these combined models within the presented framework.
 
For some applications, as for example in the computational analysis of historic structures, neither CAD nor voxel models are available. Moreover, the construction of an accurate, reverse-engineered CAD model is extremely complex and only possible in a very limited number of cases. As a remedy, this talk will present a new paradigm: to use pictures directly as geometric models for computational mechanics.  The talk will close demonstrating the computational analysis of complex-shaped large historic structures from drone images.