Events
I³MS - Pauli Seminar
Dr. Lutz Pauli - Stabilized Finite Element Methods for Computational Design of Blood-Handling Devices
Chair for Computational Analysis of Technical Systems, RWTH Aachen University
Abstract
EU Regional School - Kalidindi Seminar
Prof. Dr.Surya Kalidindi - Rigorous Quantification of the Hierarchical Material Structure in a Statistical Framework
Georg W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology, USA
Abstract
A versatile framework for the rigorous quantification of the hierarchical material internal structure will be presented in this lecture along with demonstrations to applications on a broad variety of heterogeneous material structures at different length scales and different materials classes. This new framework is based on the established concepts of n-point spatial correlations that provide a systematic statistical description of the highly complex material structure. The framework takes advantage of toolsets established in digital signal processing, Fourier representations, and principal component analyses to develop high performance computational toolsets needed for performing the computations involved. The versatility of the framework will be demonstrated through the application of a single consistent framework at both atomistic and continuum length scales as well as different materials classes (e.g., multiphase composites, polycrystals, porous membranes).
I³MS - Möller Seminar
Dr. Matthias Möller - Isogeometric Analysis for Compressible Flow Problems in Industrial Applications
Department of Applied Mathematics, Delft University of Technology, Netherlands
Abstract
In this talk, we will present an isogeometric analysis (IgA) approach for the simulation of compressible flows that arise in industrial applications, in particular, in twin-screw rotary compressors.
In the first part of the talk, we present a positivity-preserving high-resolution scheme for compressible flows building upon the generalization of the algebraic flux correction paradigm [2] to isogeometric analysis. Our approach adopts Fletcher's group formulation [1] together with an efficient edge-based formation of system matrices and vectors from pre-computed coefficients to overcome the high computational costs that are typically observed in quadrature-based IgA-assembly algorithms.
Next to this algorithmic approach to achieving high computational efficiency, our implementation in the open-source library G+Smo (https://www.gs.jku.at/gismo) makes use of meta-programming techniques to combine the computational performance of several hardware-optimized linear algebra back-ends like Blaze, Eigen, and VexCL, with ease of implementation offered by the fluid dynamics expression-template library FDBB (https://mmoelle1.gitlab.io/FDBB). Just-in time compilation techniques are used to run the solver in heterogeneous computing environments.
In the second part of the talk, we describe an isogeometric approach for the creation of analysis-suitable multi-patch parameterizations for complex industrial applications and, in particular, for (parts of) twin-screw rotary compressors. Our approach builds on well-established elliptic grid generation techniques, which have been generalized to the IgA framework.
References
[1] C.A.J. Fletcher, The group finite element formulation, Computer Methods in Applied Mechanics and Engineering, 37, 225–244, 1983.
[2] D. Kuzmin, M. Möller, M. Gurris, Algebraic flux correction II. Compressible flow problems. In: Kuzmin et al. (editors) Flux-Corrected Transport: Principles, Algorithms, and Applications, 193–238. Springer, 2nd edition, 2012.
EU Regional School - Persson Seminar
Prof. Dr. Per-Olof Persson - High-Order Discontinuous Galerkin Methods for Fluid and Solid Mechanics
Department of Mathematics
University of California at Berkeley, USA
Abstract
It is widely believed that high-order accurate numerical methods, for example discontinuous Galerkin (DG) methods, will eventually replace the traditional low-order methods in the solution of many problems, including fluid flow, solid dynamics, and wave propagation. The lecture will give an overview of this field, including the theoretical background of the numerical schemes, the efficient implementation of the methods, and examples of real-world applications. Topics include high-order compact and sparse numerical schemes, high-quality unstructured curved mesh generation, scalable preconditioners for parallel iterative solvers, fully discrete adjoint methods for PDE-constrained optimization, and implicit-explicit schemes for the partitioning of coupled fluid-structure interaction problems. The methods will be demonstrated on some important practical problems, including the inverse design of energetically optimal flapping wings and large eddy simulation (LES) of wind turbines.
EU Regional School - Kirkland Seminar
Prof. Dr. Angus Kirkland - Advanced Methods in High Resolution Transmission Electron Microscopy: Instrumentation, Simulation and Exit Wavefunction Reconstruction
Department of Materials
University of Oxford, United Kingdom
Abstract
TBA