Events

I³MS - Weiser Seminar

Location: AICES Seminar room 115, 1st floor, Schinkelstr. 2, 52062 Aachen

Dr. Martin Weiser - Mathematical Therapy Planning in Regional Hyperthermia

Department of Numerical Mathematics, Zuse Institute Berlin

Abstract

Regional hyperthermia is a cancer therapy that aims at heating large and deeply seated tumors in order to destroy them or make them susceptible to an accompanying radio or chemo therapy. Heat is induced by absorbing energy from radio waves emanating from several controllable antennas. This talk will give an overview of the mathematical tasks involved in therapy planning, covering the whole spectrum of modeling, simulation, identification, and optimization.

EU Regional School - Hughes Seminar Part 2

Location: kleine Physik (Rogowski Building)

Prof. Dr. Hughes - Isogeometric Analysis

Institute for Computational Engineering and Sciences

The University of Texas at Austin

Abstract

Last October marked the tenth anniversary of the appearance of the first paper [1] describing a vision of how to address a major problem in Computer Aided Engineering (CAE). The motivation was as follows: Designs are encapsulated in Computer Aided Design (CAD) systems. Simulation is performed in Finite Element Analysis (FEA) programs. FEA requires the conversions of CAD descriptions to analysis-suitable formats from which finite element meshes can be developed. The conversion process involves many steps, is tedious and labor intensive, and is the major bottleneck in the engineering design-through-analysis process, accounting for more than 80% of overall analysis time, which remains an enormous impediment to the efficiency of the overall engineering product development cycle. The approach taken in [1] was given the name Isogeometric Analysis. Since its inception it has become a focus of research within both the fields of FEA and CAD and is rapidly becoming a mainstream analysis methodology and a new paradigm for geometric design [2]. The key concept utilized in the technical approach is the development of a new foundation for FEA, based on rich geometric descriptions originating in CAD, resulting in a single geometric model that serves as a basis for both design and analysis. In this short course I will introduce Isogeometric Analysis, describe some of the basic tools and methods, identify a few areas of current intense activity, and areas where problems remain open, representing opportunities for future research [3]. 

REFERENCES 

[1] T.J.R. Hughes, J.A. Cottrell and Y. Bazilevs, Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement, Computer Methods in Applied Mechanics and Engineering, 194, (1 October 2005), 4135-4195. [2] J.A. Cottrell, T.J.R. Hughes and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, Chichester, U.K., 2009. [3] Isogeometric Analysis Special Issue (eds. T.J.R. Hughes, J.T. Oden and M. Papadrakakis), Computer Methods in Applied Mechanics and Engineering, 284, (1 February 2015), 1-1182. 
Lecture Material I
Lecture Material II

EU Regional School - Hughes Seminar - Part 1

Location: kleine Physik ( Rogowski Building)

Prof. Dr. Hughes - Isogeometric Analysis

Institute for Computational Engineering and Sciences 

The University of Texas at Austin

Abstract

Last October marked the tenth anniversary of the appearance of the first paper [1] describing a vision of how to address a major problem in Computer Aided Engineering (CAE). The motivation was as follows: Designs are encapsulated in Computer Aided Design (CAD) systems. Simulation is performed in Finite Element Analysis (FEA) programs. FEA requires the conversions of CAD descriptions to analysis-suitable formats from which finite element meshes can be developed. The conversion process involves many steps, is tedious and labor intensive, and is the major bottleneck in the engineering design-through-analysis process, accounting for more than 80% of overall analysis time, which remains an enormous impediment to the efficiency of the overall engineering product development cycle. The approach taken in [1] was given the name Isogeometric Analysis. Since its inception it has become a focus of research within both the fields of FEA and CAD and is rapidly becoming a mainstream analysis methodology and a new paradigm for geometric design [2]. The key concept utilized in the technical approach is the development of a new foundation for FEA, based on rich geometric descriptions originating in CAD, resulting in a single geometric model that serves as a basis for both design and analysis. In this short course I will introduce Isogeometric Analysis, describe some of the basic tools and methods, identify a few areas of current intense activity, and areas where problems remain open, representing opportunities for future research [3]. 

REFERENCES 

[1] T.J.R. Hughes, J.A. Cottrell and Y. Bazilevs, Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement, Computer Methods in Applied Mechanics and Engineering, 194, (1 October 2005), 4135-4195. [2] J.A. Cottrell, T.J.R. Hughes and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, Chichester, U.K., 2009. [3] Isogeometric Analysis Special Issue (eds. T.J.R. Hughes, J.T. Oden and M. Papadrakakis), Computer Methods in Applied Mechanics and Engineering, 284, (1 February 2015), 1-1182. 

Lecture Material I
Lecture Material II

EU Regional School - Colombo Seminar

Location: AICES Seminar Room 115, 1st floor, Schinkelstr. 2, 52062 Aachen

Prof. Dr. Colombo - Introduction to Nanoscale Thermal Transport

Department of Physics

University Citadel

Abstract

I will review the available theoretical schemes to predict the lattice thermal conductivity in a solid state material through atomistic simulations. Merits and limitations of each method will be critically addressed and discussed with reference to actual systems of current interest in nano-science/-technology. 

I will discuss thermal transport in graphene, here selected as the prototypical 2D material of paramount relevance to nanotechnology, In particular, I will address the following issues: (i) diverging vs. finite intrinsic thermal conductivity; (ii) suppression of thermal conductivity by defect engineering; (iii) thermal current rectification properties. 

Lecture Material I
Lecture Material II

Steering Committee

Location: AICES, Schinkelstr. 2