EU Regional School - Hughes Seminar - Part 1

Location: kleine Physik ( Rogowski Building)

Prof. Dr. Hughes - Isogeometric Analysis

Institute for Computational Engineering and Sciences 

The University of Texas at Austin

Abstract

Last October marked the tenth anniversary of the appearance of the first paper [1] describing a vision of how to address a major problem in Computer Aided Engineering (CAE). The motivation was as follows: Designs are encapsulated in Computer Aided Design (CAD) systems. Simulation is performed in Finite Element Analysis (FEA) programs. FEA requires the conversions of CAD descriptions to analysis-suitable formats from which finite element meshes can be developed. The conversion process involves many steps, is tedious and labor intensive, and is the major bottleneck in the engineering design-through-analysis process, accounting for more than 80% of overall analysis time, which remains an enormous impediment to the efficiency of the overall engineering product development cycle. The approach taken in [1] was given the name Isogeometric Analysis. Since its inception it has become a focus of research within both the fields of FEA and CAD and is rapidly becoming a mainstream analysis methodology and a new paradigm for geometric design [2]. The key concept utilized in the technical approach is the development of a new foundation for FEA, based on rich geometric descriptions originating in CAD, resulting in a single geometric model that serves as a basis for both design and analysis. In this short course I will introduce Isogeometric Analysis, describe some of the basic tools and methods, identify a few areas of current intense activity, and areas where problems remain open, representing opportunities for future research [3]. 

REFERENCES 

[1] T.J.R. Hughes, J.A. Cottrell and Y. Bazilevs, Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement, Computer Methods in Applied Mechanics and Engineering, 194, (1 October 2005), 4135-4195. [2] J.A. Cottrell, T.J.R. Hughes and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, Chichester, U.K., 2009. [3] Isogeometric Analysis Special Issue (eds. T.J.R. Hughes, J.T. Oden and M. Papadrakakis), Computer Methods in Applied Mechanics and Engineering, 284, (1 February 2015), 1-1182. 

Lecture Material I
Lecture Material II