SSD - Lipparini Seminar

Location: AICES Seminar Room 115, 1st floor, Schinkelstr. 2, 52062 Aachen

Prof. Filippo Lipparini, Ph.D. - Multiscale Modeling: a Chemical Perspective to an Interdisciplinary Problem

Department of Chemistry, University of Pisa, Italy
 

Abstract

Computational chemistry is the branch of chemistry that uses models and computer simulations in order to predict or rationalize the molecular behavior of chemical systems. Methods based on quantum mechanics are nowadays extensively used in order to study molecular properties, structures or reactivity and are becoming a standard technique in the toolbox of a chemist. Many different methods exist, that differ in accuracy and applicability, due to their computational cost. Unfortunately, the size of the systems to which such methodologies can be applied is limited. Processes that involve large biomolecules, or that happen in solution, can not be described in a naive way by just increasing the size of the model system. Focused multiscale models, that divide the system in a core, where the interesting process mainly happens, and an environment, which plays a spectator role to the process, but influences it by tuning the properties of the core, are one of the most successful strategies to deal with such complex phenomena. In this presentation, I will quickly present two of such multiscale models, namely, continuum solvation models and QM/MM models, and describe some of the challenges that they introduce, with particular attention on numerical and computational aspects. I will present some new algorithmic or technical solutions recently proposed, one of which is the results of a collaboration between chemists and applied mathematicians.