Prof. Karen Veroy-Grepl Ph.D.

Prof. Karen Veroy-Grepl Ph.D.

Faculty

High Performance Computation for Engineered Systems

Civil Engineering

Member

Junior Research Group Leader

Research

Reduced-Order Modeling

Contact

AICES - RWTH Aachen University
Schinkelstr. 2
52056 Aachen
Germany
Phone: +49-241-80 99 207
Fax: +49 241 80 628498
Email: veroy (AT) aices (DOT) rwth-aachen (DOT) de

Professional Career

  • since Sep 2014 - Professor (W2), Fakultät für Bauingenieurwesen, RWTH Aachen University, Germany
  • since Sep 2009 - Junior Research Group Leader, AICES, RWTH Aachen University, Germany
  • 2010-2014 - Junior Professor (W1), Fakultät für Bauingenieurwesen, RWTH Aachen University, Germany
  • 2005-2007 - Research and Development Trainee, Robert Bosch GmbH, Stuttgart, Germany
  • 2003-2005 - Postdoctoral Research Associate, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA

Research Interests

Reduced order modeling, particularly reduced basis methods for optimization, control, and inverse problems involving partial differential equations

Publications

2015

  • Z. Zhang, E. Bader, and K. Veroy. A Slack Approach to Reduced Basis Approximation and Error Estimation for Variational Inequalities. Submitted to Comptes Rendus de l’Académie des Sciences, Série I, Jul 2015.

2014

  • M. Kärcher, M.A. Grepl, and K. Veroy. Certified reduced basis methods for parametrized distributed optimal control problems. Submitted to SIAM Journal on Control and Optimization, May 2014.

2013

  • L. Zanon and K. Veroy-Grepl. The reduced basis method for an elastic buckling problem. SIAM Proceedings in Applied Mathematics and Mechanics, 13(1):439–440, 2013.

2012

  • A.-L. Gerner and K. Veroy. Certified reduced basis methods for parametrized saddle point problems. SIAM Journal for Scientific Computing, 34(5):2812–2836, 2012.

2011

  • M. Grepl and K. Veroy. A level set reduced basis approach to parameter estimation. Comptes Rendus Mathematique, 349(23):1229–1232, 2011. preprint
  • A.-L. Gerner and K. Veroy. Reduced basis a posteriori error bounds for the Stokes equations in parameterized domains: A penalty approach. To appear in Mathematical Models and Methods in Applied Sciences (M3AS). preprint

2007

  • G. Rozza and K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput Meth Appl Mech Eng, 196(7): 1244–1260, 2007. doi:10.1016/j.cma.2006.09.005
  • M.A. Grepl, N.C. Nguyen, K. Veroy, A.T. Patera, and G.R. Liu, Certified rapid solution of partial differential equations for real-time parameter estimation and optimization, in Real-time PDE-Constrained Optimization, (L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloemen Waanders, editors) SIAM Computational Science and Engineering Book Series, pp. 197–215, 2007. full text

2006

  • S. Sen, K. Veroy, D.B.P. Huynh, S. Deparis, N.C. Nguyen, and A.T. Patera. “Natural norm” a posteriori error estimators for reduced basis approximations. Journal of Computational Physics, 217(1): 37–62, 2006. doi:10.1016/j.jcp.2006.02.012

2005

  • N.C. Nguyen, K. Veroy, and A.T. Patera. Certified real-time solution of parametrized partial differential equations, in Handbook of Materials Modeling, (S. Yip, editor), Springer, pp. 1523–1558, 2005. full text
  • K. Veroy and A.T. Patera. Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds. International Journal for Numerical Methods in Fluids, 47(8-9):773-788, 2005. (Special Issue: Proceedings for 8th ICFD Conference on Numerical Methods for Fluid Dynamics, Oxford) doi:10.1002/fld.867

2003

  • K. Veroy, C. Prud’homme, and A.T. Patera. Reduced-basis approximation of the viscous Burgers equation: Rigorous a posteriori error bounds. Comptes Rendus de l’Académie des Sciences, Série I, 337(9):619-624, November 2003. doi:10.1016/j.crma.2003.09.023
  • K. Veroy, C. Prud'homme, D. Rovas, and A.T. Patera. A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations. AIAA Paper 2003-3847, Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, 2003. full text

2002

  • K. Veroy, D. Rovas, and A.T. Patera. A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: “Convex inverse” bound conditioners. Control, Optimisation and Calculus of Variations, 8:1007-1028, June 2002. Special Volume: A tribute to J.-L. Lions. doi:10.1051/cocv:2002041
  • C. Prud’homme, D. Rovas, K. Veroy, and A.T. Patera. A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. M2AN Modélisation Mathématique et Analyse Numérique, 36(5):747-771, 2002. doi:10.1051/m2an:2002035
  • C. Prud’homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera, and G. Turinici. Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. Journal of Fluids Engineering, 124(1):70-80, March 2002. doi:10.1115/1.1448332

2001

  • S.C. Wooh and K. Veroy. Spectrotemporal analysis of guided-wave pulse-echo signals: Part 1. Dispersive systems. Experimental Mechanics, 41(4):324-331, December 2001. doi:10.1007/BF02323926
  • S.C. Wooh and K. Veroy. Spectrotemporal analysis of guided-wave pulse-echo signals: Part 2. Numerical and experimental investigations. Experimental Mechanics, 41(4):332-342, December 2001 doi:10.1007/BF02323927

Other Publications