A Hybrid Mixed Discontinuous Galerkin Method for Convection-Diffusion Problems

H. Egger and J. Schöberl
Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through grant GSC 111 is gratefully acknowledged.

©H. Egger and J. Schöberl 2008. All rights reserved

List of AICES technical reports: http://www.aices.rwth-aachen.de/preprints
We propose and analyse a new finite element method for convection diffusion problems based on the combination of a mixed method for the elliptic and a discontinuous Galerkin method for the hyperbolic part of the problem. The two methods are made compatible via hybridization and the combination of both is appropriate for the solution of intermediate convection-diffusion problems. By construction, the discrete solutions obtained for the limiting subproblems coincide with the ones obtained by the mixed method for the elliptic and the discontinuous Galerkin method for the limiting hyperbolic problem, respectively. We present a new type of analysis that explicitly takes into account the Lagrange-multipliers introduced by hybridization. The use of adequate energy norms allows to treat the purely diffusive, the convection dominated, and the hyperbolic regime in a unified manner. In numerical tests, we illustrated the efficiency of our approach and compare to results obtained with other methods for convection diffusion problems.

1 Introduction

In this paper we consider stationary convection-diffusion problems of the form

$$\text{div}(-\epsilon \nabla u + \beta u) = f \quad \text{in } \Omega,$$

$$u = g_D \quad \text{on } \partial \Omega_D, \quad -\epsilon \frac{\partial u}{\partial \nu} + \beta \nu u = g_N \quad \text{on } \partial \Omega_N,$$

(1)

where Ω is a bounded open domain in \mathbb{R}^d, $d = 2, 3$ with boundary $\partial \Omega = \partial \Omega_D \cup \partial \Omega_N$ consisting of a Dirichlet and a Neumann part, ϵ is a non-negative function and $\beta : \Omega \to \mathbb{R}^d$ is a d-dimensional vector field.

Similar problems arise in many applications, e.g., in the modeling of contaminant transport, in electro-hydrodynamics or macroscopic models for semiconductor devices. A feature that makes the numerical solution difficult is that often convection plays the dominant role in (1). In the case of vanishing diffusion, solutions of (1) will in general not be smooth, i.e., discontinuities are propagated along the characteristic direction β; nonlinear problems may even lead to discontinuities or blow-up in finite time when starting from smooth initial data. So appropriate numerical schemes for the convection dominated regime have to be able to deal with almost discontinuous solutions in an accurate but stable manner. Another property that is desireable to be reflected also on the discrete level is the conservation structure inherent in the divergence form of (1).

Due to the variety of applications, there has been significant interest in the design and analysis of numerical schemes for convection dominated problems. Much work has been devoted to devise
accurate and stable finite difference and finite volume methods for the solution of hyperbolic systems by means of appropriate upwind techniques including flux or slope limiters in the nonlinear case.

A different approach to the stable solution of (almost) hyperbolic problems is offered by discontinuous Galerkin methods, introduced originally for a linear hyperbolic equation in neutron transport [34, 28, 26]. Starting from the 70’s, discontinuous Galerkin methods have been investigated intensively and applied to the solution of various linear and nonlinear hyperbolic and convection dominated elliptic problems with great success, cf. [7, 6, 1], and [17] for an overview and further references. Since in practical applications, convection respectively diffusion phenomena may dominate in different parts of the computational domain, several attempts have been made to generalize discontinuous Galerkin methods also to elliptic problems [35, 31, 23], yielding numerical schemes very similar to interior penalty methods studied much earlier [30, 5, 2]. For further references on this topic and a unified analysis of several discontinuous Galerkin methods for elliptic problems, we refer to [4]. For discontinuous Galerkin methods applied to convection diffusion problems we refer to [15, 8, 13], and to [12] for a multiscale version. Two disadvantages of discontinuous Galerkin methods applied for problems with diffusion is that, compared to a standard conforming discretization, the overall number of unknowns is increased substantially and that the resulting linear systems are much less sparse.

Another very successful approach for the solution of convection dominated problems is the streamline diffusion method [24, 27], where standard conforming finite element discretizations are stabilized by adding in a conforming way an appropriate amount of artificial diffusion in streamline direction. This method is easy to implement and yields stable discretizations in many situations, but may lead to unphysically large layers near discontinuities and boundaries. For a comparison of high order discontinuous Galerkin and streamline diffusion methods, we refer to [22]. For an appropriate treatment of boundary layers via Nitsche’s method, see [20]. In contrast to discontinuous Galerkin methods, the streamline diffusion method does not yield conservative discretizations.

Here, we follow a different approach, namely the combination of upwind techniques used in discontinuous Galerkin methods for hyperbolic problems with conservative discretizations of mixed methods for elliptic problems. Other extensions of mixed finite element methods to convection diffusion problems were considered in [14, 18].

In order to make the two different methods compatible, we will utilize hybrid formulations for the mixed and the discontinuous Galerkin methods. It is well-known [3, 10, 16] that hybridization can be used for the efficient implementation of mixed finite elements for elliptic problems. Introducing the Lagrange-multipliers also in the discontinuous Galerkin methods allows us to couple both methods naturally, and yields a stable mixed hybrid discontinuous Galerkin method with the following properties:

- For $\beta \equiv 0$ the numerical solution coincides with that of a mixed method, cf. [3, 10], and postprocessing techniques can be used to increase the accuracy of the solution.

- For $\epsilon \equiv 0$ the solution coincides with that obtained by a discontinuous Galerkin method for hyperbolic problems [28, 26].

- The intermediate convection-diffusion regime is treated automatically with no need to choose stabilization parameters.

For diffusion dominated regions, the stabilization can be omitted yielding a scheme that was studied numerically in 1D in [19]. Our analysis in Section 4.2 also includes this case.

A particular advantage of our method is that it is formulated and can be implemented elementwise, i.e., it allows for static condensation, i.e., local degrees of freedom can be eliminated on the element level (see [10, Section V.1], or Section 5 for details), yielding global systems for the Lagrange-multiplier only. In this way we can obtain global systems with less unknowns and sparser stencils than that of other discontinuous Galerkin methods, at the price of a somewhat more demanding assembling process. Further remarks and a comparison to the interior penalty are given in Section 5.2.
The relaxation of the coupling terms of discontinuous Galerkin methods has been investigated recently also by other authors. In [12], a method is proposed that, after elimination of local degrees of freedom, yields a global system corresponding to that of a continuous Galerkin method; see also [11] for similar ideas used for the construction of multilevel preconditioners. A further comparison with this method is given in Section 5.2. The hybridization of several discontinuous Galerkin methods has been proposed already in [16], but without convergence analysis.

The outline of this article is as follows: In Section 2, we review the hybrid formulation of the mixed method for the Poisson equation, and then introduce a hybrid version of the discontinuous Galerkin method for the hyperbolic subproblem. The scheme for the intermediate convection-diffusion regime then results by a combination of the two methods for the limiting subproblems, and we show consistency and conservation of all three methods under consideration. Section 3 presents the main stability and boundedness estimates for the corresponding bilinear forms, and contains an a-priori error analysis in the energy norm with emphasis on the convection dominated regime. Details on super-convergence results and postprocessing for the diffusion dominated case are presented in Section 4. Results of numerical tests including a comparison with the streamline diffusion method are presented in Section 5.

2 Hybrid mixed discontinuous Galerkin methods for convection diffusion problems

The aim of this section is to formulate the problem under consideration in detail and to fix the relevant notation and some basic assumptions. By introducing the diffusive flux \(\sigma = -\epsilon \nabla u \) as a new variable, we rewrite (1) in mixed form

\[
\begin{align*}
\sigma + \epsilon \nabla u &= 0, \quad \text{div}(\sigma + \beta u) = f \quad \text{in } \Omega \\
u &= g_D \quad \text{on } \partial \Omega_D, \quad -\epsilon \frac{\partial u}{\partial \nu} + \beta \nu u = g_N \quad \text{on } \partial \Omega_N,
\end{align*}
\]

(2)

which will be the starting point for our considerations. Here and below, \(\nu \) denotes the outward unit normal vector on the boundary of some domain. We refer to \(\beta u \) as the convective flux and call \(\sigma + \beta u \) the total flux. Existence and uniqueness of a solution to (2) follows under standard assumptions on the coefficients. For ease of presentation, let us make some simplifying assumptions.

2.1 Basic assumptions and notations

We assume that \(\Omega \) is a polyhedral domain and that \(\partial \Omega_D = \partial \Omega \), i.e., \(\partial \Omega_N = \emptyset \). Let \(T_h \) be a shape regular partition of \(\Omega \) into simplices \(T \) and let \(E_h \) denote the set of facets \(E \). By the term facets we denote interfaces between elements or to the boundary, i.e., faces or edges in three or two dimensions, respectively. We assume each element \(T \) and facet \(E \) is generated by an affine map \(\Phi_T \) or \(\Phi_E \) from a corresponding reference element \(\hat{T} \) respectively \(\hat{E} \). With \(\partial T_h \) we denote the set of all element boundaries \(\partial T \) (with outward normal \(\nu \)). Finally, by \(\chi_S \) we denote the characteristic function of a set \(S \subset \Omega \).

Regarding the coefficients, we assume for simplicity that \(g_D = 0 \) and that \(\epsilon \geq 0 \) is constant on elements \(T \in T_h \). Furthermore, the vector field \(\beta \) is assumed to be piecewise constant with continuous normal components across element interfaces, which implies that \(\text{div} \beta = 0 \). Moreover, such a vectorfield \(\beta \) induces a natural splitting of element boundaries into inflow and outflow parts, i.e., we define the outflow boundary \(\partial T^{\text{out}} := \{ x \in \partial T : \beta \nu > 0 \} \) and \(\partial T^{\text{in}} = T \setminus \partial T^{\text{out}} \). The union of the element in-/outflow boundaries will be denoted by \(\partial T_h^{\text{in}} \) respectively \(\partial T_h^{\text{out}} \) and similarly, the symbols \(\partial \Omega^{\text{in}} \) and \(\partial \Omega^{\text{out}} \) are used for the in- and outflow regions of the boundary \(\partial \Omega \).

For our analysis we will utilize the broken Sobolev spaces

\[
H^s(T_h) := \{ u : u \in H^s(T), \forall T \in T_h \}, \quad s \geq 0,
\]
and for functions \(u \in H^{s+1}(T_h) \) we define \(\nabla u \in [H^s(T_h)]^d \) to be the piecewise gradient. In a natural manner we define the inner products

\[
(u, v)_T := \int_T u v \, dx \quad \text{and} \quad (u, v)_{T_h} := \sum_{T \in T_h} (u, v)_T,
\]

with the obvious modifications for vector valued functions. The norm induced by the volume integrals \((\cdot, \cdot)_T\) is denoted by \(\|u\|_{T_h} := \sqrt{(u, u)_T} \), and for piecewise constant \(\alpha \) we define \(\alpha (u, v)_{T_h} := \sum_T (\alpha u, v)_T \) and \(\alpha u \|_{T_h} := \sqrt{\alpha^2 (u, u)_{T_h}} \). Norms and seminorms on the broken Sobolev spaces \(H^s(T_h) \) will be denoted by \(\| \cdot \|_{s, T_h} \) and \(| \cdot |_{s, T_h} \).

For the element interfaces we consider the function spaces

\[
L^2(E_h) := \{ \mu : \mu \in L^2(E), \forall E \in E_h \}, \quad \text{and} \quad L^2(\partial T_h) := \{ v : v \in L^2(\partial T), \forall T \in T_h \}.
\]

Note that functions in \(L^2(\partial T_h) \) are double valued on element interfaces and may be considered as traces of elementwise defined functions. Moreover, we can identify \(\mu \in L^2(E_h) \) with a function \(v \in L^2(\partial T_h) \) by duplicating the values at element interfaces, so in this sense \(L^2(E_h) \subset L^2(\partial T_h) \).

For \(u, v \in L^2(\partial T_h) \) we denote integrals over element interfaces by

\[
\langle \lambda, \mu \rangle_{\partial T} := \int_{\partial T} \lambda \mu \, ds \quad \text{and} \quad \langle \lambda, \mu \rangle_{\partial T_h} := \sum_T \langle \lambda, \mu \rangle_{\partial T},
\]

and the corresponding norms are denoted by \(|u|_{\partial T_h} := \sqrt{(u, u)_{\partial T_h}} \). Again, we write \(\alpha (u, v)_{\partial T_h} \) with the meaning \(\sum_T (\alpha u, v)_{\partial T} \).

Let us now turn to the formulation of appropriate finite element spaces. We start from piecewise polynomials on the reference elements, and define the finite element spaces via appropriate mappings, cf. [9]. By \(P_k(T) \) respectively \(P_k(E) \), we denote the set of all polynomials of order \(\leq k \), and by \(RT_k(T) := P_k(T) \oplus \hat{x} \cdot P_k(T) \) we denote the Raviart-Thomas (-Nedelec) element, cf. [33, 29] and [10]. Here the symbol \(\oplus \) is used to denote the union of two vector spaces. For our finite element methods we will utilize the following functions spaces:

\[
\Sigma_h := \{ \tau_h \in [L^2(\Omega)]^d : \tau_h|_T = \Phi_T^\tau \circ \Phi_T^{-1}, \hat{\tau} \in RT_h(\hat{T}) \},
\]

\[
V_h := \{ v_h \in L^2(\Omega) : v_h|_T = \hat{v} \circ \Phi_T^{-1}, \hat{v} \in P(\hat{T}) \},
\]

\[
M_h := \{ \mu_h \in L^2(E_h) : \mu|_E = \hat{\mu} \circ \Phi_E^{-1}, \mu = 0 \text{ on } \partial \Omega, \hat{\mu} \in P(\hat{E}) \}.
\]

For convenience we will sometimes use the notation \(W_h := \Sigma_h \times V_h \times M_h \). Since we assumed that our elements \(T \) are generated by affine maps \(\Phi_T \), the finite element spaces could be defined equivalently as the appropriate polynomial spaces on the mapped triangles, cf. [10]. This would however complicate a generalization to non affine elements.

Let us now turn to the formulation of the finite element methods. We will start by recalling the hybrid mixed formulation for the elliptic subproblem \((\beta \equiv 0) \) and then introduce a hybrid version for the discontinuous Galerkin method for the hyperbolic subproblem \((\epsilon \equiv 0) \). The scheme for the intermediate convection diffusion problem then results by simply adding up the bilinear and linear forms of the limiting subproblems.

2.2 Diffusion

For \(\beta \equiv 0 \) equation (2) reduces to the mixed form of the Dirichlet problem

\[
\sigma = -\epsilon \nabla u, \quad \text{div} \sigma = f, \quad \text{in } \Omega, \quad u = 0 \text{ on } \partial \Omega, \quad \beta \equiv 0 \quad \text{equation (2) reduces to the mixed form of the Dirichlet problem}
\]

\[
\sigma = -\epsilon \nabla u, \quad \text{div} \sigma = f, \quad \text{in } \Omega, \quad u = 0 \text{ on } \partial \Omega, \quad (3)
\]
and the corresponding (dual) mixed variational problem reads
\[
\frac{1}{\epsilon}(\sigma, \tau)_T - \langle u, \text{div}\tau \rangle_T = 0 \quad \forall \tau \in H(\text{div}, \Omega)
\]
\[
\langle \text{div}\sigma, v \rangle_T = (f, v)_T \quad \forall v \in L^2(\Omega).
\]

While a conforming discretization of (3) allows to easily obtain conservation also on the discrete level, it also has some disadvantages: The resulting linear system is a saddlepoint problem and involves considerably more degrees of freedom than a standard (primal) \(H^1 \) conforming discretization of (3). Both difficulties can be overcome by hybridization, cf. [3, 10, 16]. Let us shortly sketch the main ideas: Instead of requiring the discrete fluxes to be in \(H(\text{div}, \Omega) \), one can use completely discontinuous piecewise polynomial ansatz functions, and ensure continuity of the normal fluxes over element interfaces by adding appropriate constraints. The corresponding discretized variational problem reads
\[
\frac{1}{\epsilon}(\sigma_h, \tau_h)_T - \langle u_h, \text{div}\tau_h \rangle_T + \langle \lambda_h, \tau_h\nu \rangle_{\partial T_h} = 0, \quad \forall \tau_h \in \Sigma_h
\]
\[
\langle \text{div}\sigma_h, v_h \rangle_T = (f, v)_T, \quad \forall v_h \in V_h
\]
\[
\langle \sigma_h\nu, \mu_h \rangle_{\partial T_h} = 0, \quad \forall \mu_h \in M_h.
\]

Note that the choice of finite element spaces allows to eliminate the dual and primal variables on the element level, yielding a global (positive definite) system for the Lagrange multipliers only.

The global system has an optimal sparsity pattern and information on the Lagrange multipliers can further be used to obtain better reconstructions by local postprocessing. We refer to [3, 10, 36] for further discussion of these issues, and come back to postprocessing later in Section 4.

After integration by parts, we arrive at the following hybrid mixed finite element method.

Method 1 (Diffusion) Find \((\sigma_h, u_h, \lambda_h) \in \Sigma_h \times V_h \times M_h\) such that
\[
\mathcal{B}_D(\sigma_h, u_h, \lambda_h; \tau_h, v_h, \mu_h) = \mathcal{F}_D(\tau_h, v_h, \mu_h)
\]
for all \(\tau_h \in \Sigma_h, v_h \in V_h\) and \(\mu_h \in M_h\), where \(\mathcal{B}_D\) and \(\mathcal{F}_D\) are defined by
\[
\mathcal{B}_D(\sigma_h, u_h, \lambda_h; \tau_h, v_h, \mu_h) := \frac{1}{\epsilon}(\sigma_h, \tau_h)_T + (\nabla u_h, \tau_h)_T + \langle \lambda_h - u_h, \tau_h\nu \rangle_{\partial T_h} + (\sigma_h, \nabla v_h)_T + \langle \sigma_h\nu, \mu_h - v_h \rangle_{\partial T_h},
\]
and
\[
\mathcal{F}_D(\tau_h, v_h, \mu_h) := -(f, v_h)_T.
\]

We only mention that the case \(\epsilon = 0\) on some elements \(T\) can be allowed in principle; for these elements the term \(\frac{1}{\epsilon}(\sigma_h, \tau_h)_T\) just has to be interpreted as \(\sigma_h|_{T} \equiv 0\).

Remark 1 Let \(\Sigma := [H^1(T_h)]^d, V := H^1(T_h)\) and \(M := \{\mu \in L^2(E_h) : \mu \equiv 0\;\text{on}\;\partial\Omega\}\), and let \(W := \Sigma \times V \times M\). The above bilinear form is then defined for all \((\sigma, u, \lambda; \tau_h, v_h, \mu_h) \in W \oplus W_h \times W_h\). This property will be used below to show consistency of the method and obtain Galerkin orthogonality. Using appropriate lifting operators \(L : L^2(T_h) \to \Sigma_h\), the terms involving integrals over the boundary could be replaced by volume integrals, e.g., \(\langle \lambda_h - u_h, \tau_h\nu \rangle_{\partial T_h} = (L(\lambda_h - u_h), \tau_h)_T\), and in this way Method 1 can be well defined on \((W_h \oplus W) \times (W_h \oplus W)\). Such extensions are used, e.g., in [32, 21] for the hp-error analysis of discontinuous Galerkin methods under minimal regularity assumptions.

Method 1 is algebraically equivalent to the conforming RT\(k\) \(\times P_k\) discretization of the dual mixed formulation of (3), and can be seen as a pure implementation trick. Below, we will analyze Method 1 in a somewhat non standard way, including the gradient of the primal variable and the Lagrange multipliers explicitly in the energy norm. This kind of analysis is quite close to that of discontinuous Galerkin methods for elliptic problems, and allows us to investigate the mixed method together with the discontinuous Galerkin method for the hyperbolic subproblem in a uniform framework.
2.3 Convection

By setting \(\epsilon \equiv 0 \) in (2), we arrive at the limiting hyperbolic problem

\[
\text{div}(\beta u) = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega. \tag{7}
\]

Multiplying (7) by a test function \(v \in H^1(T_h) \), and adding upwind stabilization, we obtain the discontinuous Galerkin method for hyperbolic problems [34, 28, 26]

\[
\left(\text{div}(\beta u), v \right)_{T_h} + \left\langle \beta v (u^+ - u), v \right\rangle_{\partial T_h} = (f, v)_{T_h},
\]

where \(u^+ := u|_{\partial T^+} \) denotes the upwind value and \(T^+ \) is the upwind element, i.e., the element attached to \(E \) where \(\beta v = \beta \cdot \nu_T \geq 0 \). To incorporate the boundary condition, we define \(u^+ = 0 \) on \(\partial \Omega \). After integration by parts, and noting that \(u = u^+ \) on \(\partial T \) out we obtain

\[
(u, \beta \nabla v)_{T_h} - \left\langle \beta v u^+, v \right\rangle_{\partial T_h^+} - \left\langle \beta v u, v \right\rangle_{\partial T_h^\text{out}} = -(f, v)_{T_h}.
\]

In order to make the discontinuous Galerkin method compatible with the hybrid mixed method formulated in the previous section, let us introduce the upwind value as a new variable \(\lambda := u^+ \), and let us define the the symbol

\[
\{\lambda/u\} := \begin{cases} \lambda, & E \subset \partial T^\text{in} \\ u, & E \subset \partial T^\text{out} \end{cases}
\]

for all \(T \in T_h \). Note that \(\lambda = \{\lambda/u\} = u^+ \) on both sides of \(E \), so \(\{\lambda/u\} \) is just a new characterization of the upwind value. After discretization we now arrive at the following hybrid version of the discontinuous Galerkin method.

Method 2 (Convection) Find \((u_h, \lambda_h) \in V_h \times M_h\) such that

\[
B_C(u_h, \lambda_h; v_h, \mu_h) = F_C(v_h, \mu_h) \tag{8}
\]

for all \((v_h, \mu_h) \in V_h \times M_h\) with

\[
B_C(u_h, \lambda_h; v_h, \mu_h) := \left(u_h, \beta \nabla v_h \right)_{T_h} + \left\langle \beta v \{\lambda_h/u_h\}, \mu_h - v_h \right\rangle_{\partial T_h}, \tag{9}
\]

and

\[
F_C(v_h, \mu_h) := -(f, v)_{T_h}. \tag{10}
\]

By construction, Method 2 is algebraically equivalent to the classical discontinuous Galerkin method. This can easily be seen by testing with \(\mu_h = \chi_E \) which yields that \(\lambda_h = u_h^+ \) on the element interfaces. All terms of the bilinear form are again defined elementwise, which allows us to use static condensation on the element level. Moreover, as in the case of pure diffusion, the bilinear form \(B_C \) can be extended onto \(W \oplus W_h \times W_h \), which then allows to derive consistency and use Galerkin orthogonality arguments. On facets \(E \) where \(\beta v = 0 \), the Lagrange multiplier is not uniquely defined, and we set \(\lambda = 0 \) there.

2.4 Convection-diffusion regime

Let us now return to the original convection-diffusion problem and consider the system

\[
\sigma + \epsilon \nabla u = 0, \quad \text{div}(\sigma + \beta u) = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega. \tag{11}
\]

Since we used the same spaces for the discretization of the elliptic and hyperbolic subproblems, the two hybrid methods can be coupled in a very natural way by simply adding up their bilinear and linear forms. This yields the following hybrid mixed discontinuous Galerkin method for the intermediate convection-diffusion regime.
Method 3 (Convection diffusion) Find \((\sigma_h, u_h, \lambda_h) \in (\Sigma_h, V_h, M_h)\) such that

\[
B(\sigma_h, u_h, \lambda_h; \tau_h, v_h, \mu_h) = \mathcal{F}(\sigma_h, u_h, \lambda_h)
\]

for all \(\tau_h \in \Sigma_h\), \(v_h \in V_h\) and \(\mu_h \in M_h\), where \(B\) and \(\mathcal{F}\) are defined by

\[
B(\sigma_h, u_h, \lambda_h; \tau_h, v_h, \mu_h) := \frac{1}{2} (\sigma_h, \tau_h)_{\mathcal{T}_h} + (\nabla u_h, \tau_h)_{\mathcal{T}_h} + \langle \lambda_h - u_h, \tau_h \nu \rangle_{\partial \Omega_h}
\]

\[
+ (\sigma_h + \beta u_h, \nabla v_h)_{\mathcal{T}_h} + \langle \sigma_h \nu + \beta \nu \{\lambda_h/u_h\}, \mu_h - v_h \rangle_{\partial \Omega_h},
\]

and

\[
\mathcal{F}(\tau_h, v_h) := -(f, v_h)_{\mathcal{T}_h}.
\]

By testing with \(\mu_h = \chi_E\) for \(E \in \mathcal{E}_h\) we obtain that \(\sigma_h \nu_E + \beta \nu_E \{\lambda_h/u_h\}\) is continuous across element interfaces. Here, \(\nu_E\) denotes the unit normal vector on \(E\) with fixed orientation. Thus \(\lambda_h\) and \(\sigma_h \nu_E + \beta \nu_E \{\lambda_h/u_h\}\) have unique values on the element interfaces and can be considered as discrete traces for \(u\) and the total flux \(\sigma + \beta u\).

2.5 Consistency and conservation

Before we turn to a detailed analysis of the finite element methods 1-3, let us summarize two important properties, which follow almost directly from the corresponding properties of the mixed respectively the discontinuous Galerkin method for limiting subproblems. For sake of completeness we sketch the proofs in the present framework.

Proposition 1 (Consistency) The methods 1-3 are consistent, i.e., let \(u\) denote the solution of the problem (3), (7), respectively (11) and define \(\sigma = -\epsilon \nabla u\) and \(\lambda = u\). Then the corresponding variational equations (4), (8) and (12) hold, if \(\sigma_h, u_h, \lambda_h\) are replaced by \(\sigma, u\) and \(\lambda\).

Proof. Method 1: Let \(u\) denote the solution of (3), and make the substitutions as mentioned in the proposition. Then, we obtain by testing the bilinear form \(\mathcal{B}_D\) with \((\tau_h, 0, 0)\)

\[
\mathcal{B}_D(-\epsilon \nabla u, u; \tau_h, 0, 0) = -(\nabla u, \tau_h)_{\mathcal{T}_h} + (\nabla u, \tau_h)_{\mathcal{T}_h} - (u - u, \tau_h \nu)_{\partial \Omega_h} - (u, \tau_h \nu)_{\partial \Omega_h} = 0.
\]

Next we test with \((0, v_h, 0)\) and integrate by parts to recover

\[
\mathcal{B}_D(-\epsilon \nabla u, u, v_h; 0, 0) = -(\nabla (-\epsilon \nabla u), v_h)_{\mathcal{T}_h} = -(f, v_h)_{\mathcal{T}_h},
\]

which follows since \(u\) is the solution of (3). Finally, testing with \((0, 0, \mu_h)\) we obtain

\[
\mathcal{B}_D(-\epsilon \nabla u, u, v_h; 0, 0, \mu_h) = -\frac{\partial u}{\partial \eta} = 0,
\]

which holds since \(\nabla (-\epsilon \nabla u) = f \in L^2\) implies \(\epsilon \nabla u \in H(\text{div}; \Omega)\) and thus the normal flux \(-\epsilon \frac{\partial u}{\partial \eta}\) is continuous across element interfaces. Note that at this point we formally require some extra regularity, e.g., \(u \in H^1(\Omega) \cap H^{3/2+s}(\mathcal{T}_h)\) or \(\sigma = -\epsilon \nabla u \in L^s(\Omega)\) for some \(s > 2\), in order to ensure that the moments \(\langle \frac{\partial u}{\partial \eta} \rangle_{\mathcal{T}_h}\) are well-defined for \(\mu_h \in M_h\), cf. [10]. As already mentioned in Remark 1 this extra regularity assumption can be dropped by appropriately extending \(\mathcal{B}_D\). Summarizing we have shown that Method 1 is consistent.

Next, consider Method 2 and let \(u\) denote the solution of (7). Substituting \(u\) for \(u_h\) and \(\lambda_h\) in (8) - (10) and testing with \((v_h, 0)\) we obtain after integration by parts

\[
\mathcal{B}_C(u, u; v_h, 0) = (\nabla (\beta u), v_h)_{\mathcal{T}_h} - (\beta \nu u, v_h)_{\partial \Omega_h} = -(f, v_h)_{\mathcal{T}_h}.
\]
Now test with \((0, \mu_h)\), then we have
\[
B_C(u, u; 0, \mu_h) = \langle \beta \nu u, \mu_h \rangle_{\partial T_h} = 0,
\]
since \(u\) and \(\mu_h\) are single valued and \(\beta \nu\) appear two times with different signs for each element interface. Thus we have proven consistency of Method 2.

Finally, Method 3 is consistent as it is the sum of two consistent methods. \(\square\)

While consistency is a key ingredient for the derivation of a-priori error estimates, conservation is a property of the discrete methods which is desired for physical reasons, since it inhibits unphysical increase of mass or total charge. This is particularly important for time dependent problems. If a finite element scheme allows to test with piecewise constant functions, conservation can be shown to hold locally (for each element) as well as globally as long as the discrete fluxes are single valued on element interfaces.

Proposition 2 (Conservation) The methods 1-3 are locally and globally conservative.

Proof. Let us first show the local conservation of Method 1 by testing (4) with \((0, \chi_T, 0)\). This yields
\[
-(f, 1)_T = B_D(u_h, \lambda_h, \sigma_h; 0, \chi_T, 0) = -\langle \sigma_h \nu, 1 \rangle_{\partial T},
\]
that is, the total flux over an element boundary equals the sum of internal sources, and hence the method is locally conservative. By testing with \((0, 0, \chi_E)\) for some \(E \in E_h\), we obtain continuity of the normal fluxes \(\sigma_h \nu\) across element interfaces, and so the scheme is also globally conservative.

Now to Method 2: Testing with \((\chi_T, 0)\) we get
\[
(f, 1)_T = B_C(u_h, \lambda_h; \chi_T, 0) = \langle \beta \nu \lambda_h, 1 \rangle_{\partial T^{int}} + \langle \beta \nu u_h, 1 \rangle_{\partial T^{out}},
\]
so the total flux over the element boundaries equals the sum of internal sources and fluxes over the boundary of the domain. Note that \(\beta \nu \{\lambda_h / u_h\}\) defines a unique flux on element interfaces.

Now let \(E \in E_h\) such that \(E = \partial T^{int}_1 \cap \partial T^{out}_2\). By testing with \((0, \chi_E)\), we obtain
\[
0 = B_C(u_h, \lambda_h; 0, \chi_E) = \langle \beta \nu \{\lambda_h / u_h\}, 1 \rangle_{\partial T^{int}_1} + \langle \beta \nu \{\lambda_h / u_h\}, 1 \rangle_{\partial T^{out}_2}
= \langle \beta \nu u_h, 1 \rangle_{\partial T^{int}_1} + \langle \beta \nu \lambda_h, 1 \rangle_{\partial T^{out}_2},
\]
so the total outflow over a facet on one element levels the inflow over the same facet on the neighboring element.

Finally, Method 3 is conservative as it is the sum of two conservative methods. \(\square\)

3 A priori error analysis

As already mentioned previously, our analysis of the hybrid methods under consideration is inspired by that of discontinuous Galerkin methods \([26, 4]\), in particular we will utilize similar mesh dependent energy norms for proving stability and boundedness of the bilinear- and linear forms.

We will show stability of Method 1 in the norm
\[
||| (\tau, v, \mu) |||_D := \left(\frac{1}{2} ||| \tau |||_{T_h}^2 + \epsilon ||| \nabla v |||_{T_h}^2 + \frac{1}{h} |\lambda - u|_{\partial T_h}^2 \right)^{1/2},
\]
and stability of Method 2 will be analyzed with respect to the norm
\[
||| (u, \lambda) |||_C := \left(\frac{1}{|T|} ||| \beta \nabla u |||_{T_h}^2 + |\beta \nu| |\lambda - u|_{\partial T_h}^2 \right)^{1/2}.
\]
Here by $|\beta|$ and $|\beta\nu|$ we understand appropriate bounds for β respectively $\beta\nu$ on single elements or facets. Note, that for $\epsilon \sim h\beta$ (the crossover from diffusion dominated to convection dominated regime) all terms in (15) and (16) scale uniformly with respect to ϵ, β and h. For proving the boundedness of the bilinear forms we require slightly different norms
\[\| (\tau, v, \mu) \|_{D,*} := (\| (\tau, v, \mu) \|_{D}^2 + \frac{h}{\gamma} |\nu\|_{\partial T_h}^2)^{1/2}, \] (17)
and
\[\| (u, \lambda) \|_{C,*} := (\| u \|_{T_h}^2 + |\beta\nu| \| \lambda/u \|_{\partial T_h}^2)^{1/2}. \] (18)
These norms scale again in the same manner with respect to h, ϵ and β as their counterparts (15) and (16), and therefore it can be shown easily that the additional terms do not disturb the approximation.

3.1 Pure diffusion - Method 1

Below we will require the following preparatory result.

Lemma 1 Let $v_h \in V_h$ and $\mu_h \in M_h$ be given. Then there exists a unique solution $\tilde{\tau} \in \Sigma_h$ defined elementwise by the variational problems
\[(\tilde{\tau}, p)_T = (\nabla v_h, p)_T, \quad \forall p \in [P_{k-1}(T)]^d \]
\[(\tilde{\nu}, q)_{\partial T} = (\mu_h, q)_{\partial T}, \quad \forall q \in P_h(\partial T). \]
Moreover, there exists a constant c_I only depending on the shape of the elements such that
\[\| \tilde{\tau} \|_{T_h} \leq c_I (\| \nabla v_h \|_{T_h}^2 + h |\mu_h|_{\partial T_h}^2)^{1/2}. \] (19)

Proof. The existence of a unique solution $\tilde{\tau}$ follows with standard arguments, and the norm estimate then follows by the usual scaling argument and the equivalence of norms on finite dimensional spaces, cf. [10] for details.

Since the estimate (19) uses an inverse inequality, the constant c_I depends on the shapes of the elements. Lemma 1 now allows us to construct a suitable test function for establishing the following stability estimate.

Proposition 3 (Stability) There exists a positive constant c_D independent of the meshsize h such that the estimate
\[\sup_{(\tau_h, v_h, \mu_h)} \frac{B_D(\sigma_h, u_h, \lambda_h; \tau_h, v_h, \mu_h)}{\| (\tau_h, v_h, \mu_h) \|_{D}} \geq c_D \| (\sigma_h, u_h, \lambda_h) \|_{D}, \] (20)
holds for all $(\sigma_h, u_h, \lambda_h) \in \Sigma_h \times V_h \times M_h$.

Proof. Let us start with testing the bilinear form (5) with $(\sigma_h, -u_h, -\lambda_h)$, which yields
\[B_D(\sigma_h, u_h, \lambda_h; -v_h, -\mu_h) = \frac{1}{\gamma} |\sigma_h|_{\partial T_h}^2. \]
Now let $\tilde{\tau}$ be defined as in Lemma 1 with μ_h replaced by $\frac{1}{\gamma}(\lambda_h - u_h)$ and ∇v_h replaced by $\epsilon \nabla u_h$, so that
\[\| \tilde{\tau} \|_{T_h} \leq c_I (\epsilon^2 |\lambda_h - u_h|_{\partial T_h}^2 + \epsilon^2 \| \nabla u_h \|_{T_h}^2)^{1/2} \] (21)
holds with constant c_I independent of the meshsize h. For $\gamma > 0$ we then obtain
\[B_D(\sigma_h, u_h, \lambda_h; \gamma \tilde{\tau}, 0, 0) \]
\[= \gamma \frac{1}{\gamma} (\sigma_h, \tilde{\tau})_{T_h} + \gamma (\nabla u_h, \tilde{\tau})_{T_h} + (\lambda_h - u_h, \tilde{\tau})_{\partial T_h} \]
\[\geq - \frac{1}{\gamma} |\sigma_h|_{T_h}^2 - \frac{\gamma^2}{2} \| \tilde{\tau} \|_{T_h}^2 + \gamma (\epsilon \| \nabla u_h \|_{T_h}^2 + \frac{\gamma}{\epsilon} |\lambda_h - u_h|_{\partial T_h}^2) \]
\[\geq - \frac{1}{\gamma} |\sigma_h|_{T_h}^2 + (\gamma - \frac{\gamma^2}{2}) (\epsilon \| \nabla u_h \|_{T_h}^2 + \frac{\gamma}{\epsilon} |\lambda_h - u_h|_{\partial T_h}^2), \]
where we used (21) for the last estimate. The assertion of the proposition now follows by choosing
\[\gamma = \frac{1}{c_I} \]
and combining the estimates for the two choices of test functions.

\[\Box \]

Remark 2 The constant \(c_D \) in (20) depends on the constant \(c_I \) of (19) and thus on an inverse inequality. To make the dependence on the polynomial degree \(k \) explicit, let us slightly change the definition of \(\tau \) by requiring \(\tau \nu = h^{-1} k^2 (\lambda_h - u_h) \) and define the energy norm by
\[\| \sigma, u_h, \lambda_h \|_D^2 := \| \sigma_h \|_T^2 + \| \nabla u_h \|_T^2 + h^{-1} k^2 |\lambda_h - u_h|_{\partial T_h}^2. \]
Then one can show that the ellipticity estimate holds with \(c_D = \tilde{c}_D k^{-s} \) for \(s > 1/2 \) and \(\tilde{c}_D \) independent of \(k \). Therefore, we will observe sub-optimality of the error estimates with respect to the polynomial degree \(k \). Note, that the scaling of the jump terms \(|\lambda_h - u_h|_{\partial T_h} \) is the same as the one used in the \(hp \)-error analysis of discontinuous Galerkin methods, cf. [32, 21].

After using Galerkin orthogonality in the analysis below, we will need boundedness of \(B_D \) on the larger space \(W \oplus W_h \times W_h \).

Proposition 4 (Boundedness) There exists a constant \(C_D \) independent of \(h \) such that the estimate
\[\| B_D(\sigma, u_h, \lambda_h; v_h, \mu_h) \| \leq C_D \| \sigma, u, \lambda \|_{D, *} \| (\tau, v, \mu) \|_{D} \] (22)
holds for all \((\sigma, u, \lambda) \in \mathcal{W} \oplus W_h \) and \((\tau, v, \mu) \in W_h \).

Proof. We consider only the term \((\lambda - u, \tau, \nu)_{\partial T_h} \) in detail. Using the Cauchy-Schwarz and a discrete trace inequality \(|\tau|_{\partial T} \leq \sqrt{k} \| \tau \|_T \), we obtain
\[|(\lambda - u, \tau, \nu)_{\partial T} | \leq \sqrt{k} \| \lambda - u \|_{\partial T_h} \| \tau \|_T. \]
The result then follows by standard estimates for the remaining terms and summing up all elements.

The above discrete trace inequality cannot be used for the term involving \(\sigma, \nu \), since \(\sigma \in W \oplus W_h \). Therefore an additional term appears in the norm \(\| \cdot \|_{D, *}. \)

3.2 Pure convection - Method 2

Since Method 2 is equivalent to the discontinuous Galerkin method for hyperbolic problems, our analysis is carried out in a similar manner to that presented in [26].

Proposition 5 (Stability) There exists a constant \(c_C \) independent of the meshsize \(h \) such that the estimate
\[\sup_{(v_h, \mu_h)} \frac{B_C(u_h, \lambda_h; v_h, \mu_h)}{\| (v_h, \mu_h) \|_C} \geq c_C \| (u_h, \lambda_h) \|_C \] (23)
holds for all \((u_h, \lambda_h) \in V_h \times M_h. \)

Proof. We start by choosing test functions \(v_h = -u_h \) and \(\mu_h = -\lambda_h. \) Since \(\text{div}\beta = 0 \) we have
\[(u_h, \beta \nabla u_h)_T = \frac{1}{2} \langle \beta \nu, u_h \rangle_{\partial T_h} \] on each element, and thus
\[B_C(u_h, \lambda_h; -u_h, -\lambda_h) = \frac{1}{2} \langle \beta \nu, u_h \rangle_{\partial T_h} \]
\[= \frac{1}{2} \langle \beta \nu, u_h \rangle_{\partial T_h} + \langle \beta \nu, \{ \lambda_h / u_h \}, u_h \rangle_{\partial T_h} - \langle \beta \nu, \{ \lambda_h / u_h \}, \lambda_h \rangle_{\partial T_h} \]
\[= (1) + (2) + (3) = (\ast). \]

Recall that \(\lambda_h \) equals 0 on \(\partial \Omega \), and let us rearrange the terms (1)-(3) in the following way:
\[(1) = -\frac{1}{2} \langle \beta \nu, u_h \rangle_{\partial T_h} = \frac{1}{2} \langle \beta \nu \| u_h \|^2_{\partial T_h} - \frac{1}{2} \langle \beta \nu \| u_h \|^2_{\partial T_h} \rangle, \]
\[(2) = \langle \beta \nu, \{ \lambda_h / u_h \}, u_h \rangle_{\partial T_h} = \langle \beta \nu \| u_h \|^2_{\partial T_h} - \langle \beta \nu \| \lambda_h \| u_h \|^2_{\partial T_h} \rangle, \]
\[(3) = -\langle \beta \nu, \{ \lambda_h / u_h \}, \lambda_h \rangle_{\partial T_h} = \langle \beta \nu \| \lambda_h \|^2_{\partial T_h} - \langle \beta \nu \| \lambda_h \| u_h \|^2_{\partial T_h} \rangle. \]
Now let T_1, T_2 denote two elements sharing the facet $E = \partial T_{\text{out}} \cap \partial T_{\text{out}}$. Since λ_h is single valued on E by definition, we have $\lambda_h|_{\partial T_{\text{out}}} = \lambda_h|_{\partial T_{\text{in}}}$, that means we can shift the terms only involving the Lagrange multiplier between neighboring elements. Summing up, we obtain

$$(*) = \frac{1}{2} |\beta\nu| |\lambda_h - u_h|^2_{\partial T_h}.$$

Let us now include a second term in the stability estimate by testing the bilinear form with $v_h = -\gamma \frac{h}{|\beta|} \beta \nabla u_h$ for some $\gamma \geq 0$, which yields

$$B_C(u_h, \lambda_h; v_h, 0) = -\frac{\gamma h}{|\beta|} (u_h, \beta \nabla (\beta \nabla u_h))|_{\partial T_h} + \frac{\gamma h}{|\beta|} (\beta \nu \{\lambda_h/u_h\}, \beta \nabla u_h)|_{\beta T_h}$$

$$= \frac{\gamma h}{|\beta|} |\beta \nabla u_h|^2_{\partial T_h} + \frac{\gamma h}{|\beta|} (|\beta \nu (\lambda_h - u_h)|, \beta \nabla u_h)_{\beta T_h}$$

$$\geq c \gamma \frac{h}{|\beta|} |\beta \nabla u_h|^2_{\partial T_h} - |\beta \nu| |\lambda_h - u_h|^2_{\beta T_h}.$$

For the last estimate we used Young’s inequality and a discrete trace inequality. The result now follows by choosing $\gamma = \frac{1}{|\beta|}$ and combining the estimates for the two different test functions. Note that by inverse inequalities and due to our scaling of v_h with $h/|\beta|$, it follows that $\|(v_h, 0)|_C \leq C \|(u_h, 0)|_C$ with a constant C independent of the meshsize. \qed

Proposition 6 (Boundedness) There exists a constant C_C independent of h such that the estimate

$$|B_C(u_h, \lambda; v_h, \mu_h)| \leq C_C \|(u, \lambda)\|_{C,*} \|(v_h, \mu_h)\|_C$$

holds for all $u \in V \oplus V_h$, $\lambda \in M \oplus M_h$, and $v_h \in V_h \times M_h$.

Proof. The assertion follows directly from the definition of the norms and the Cauchy-Schwarz inequality. \qed

3.3 Convection-diffusion - Method 3

Due to the structure of Method 3 as the combination of Methods 1 and 2, the stability and boundedness of the bilinear form (13) follows almost directly from the corresponding properties of the bilinear forms for the limiting subproblems. The appropriate norms for the analysis of Method 3 are given by

$$\|\|_D \leq \|\|_{D,*} \leq \|\|_{C,*}$$

and

$$\|\|_D \leq \|\|_{D,*} \leq \|\|_{C,*}$$

i.e., they are just assembled from the norms used for the analysis of the elliptic and hyperbolic subproblems. Note that all terms in the norm scale appropriately, e.g., in the diffusion dominated case ($|\beta|h \leq \epsilon$) the terms coming from the convective part can be absorbed by the terms stemming from the stability of the diffusion part. Let us now state the properties of B in detail.

Proposition 7 (Stability) There exists a positive constant c_B not depending on the meshsize h such that

$$\sup_{(n, t, v, \mu_h)} \frac{B(n, t, v, \mu_h)}{\|n, t, v, \mu_h\|^2} \geq c_B \|\|_C$$

holds for all $(n, t, v, \mu_h) \in \Sigma_h \times V_h \times M_h$.

11
Proof. We will show the inf-sup stability by testing with the functions used in the previous stability estimates, i.e., \(\tau_h = \sigma_h + \alpha \tau, v_h = -u_h + \gamma \frac{h}{|\beta|} \beta \nabla u_h, \mu_h = -\lambda_h \). In view of Proposition 3 and 5, it only remains to estimate the additional term coming from the test function \(\gamma \frac{h}{|\beta|} \beta \nabla u_h \) inserted in the diffusion bilinear form, viz.

\[
B_D(\sigma_h, u_h, \lambda_h; 0, h \frac{\beta}{|\beta|} \nabla u_h, 0) = -\gamma h \frac{\beta}{|\beta|} (\sigma_h, \nabla (\beta \nabla u_h)) + \gamma \frac{h}{|\beta|} (\sigma_h \nu, \beta \nabla u_h)
\]

\[
= \frac{h}{|\beta|} (\text{div} \sigma_h, \beta \nabla u_h) \geq -\gamma \frac{h}{|\beta|} \| \sigma_h \| \| \beta \nabla u_h \|
\]

\[
\geq -c \gamma \left(\frac{h}{|\beta|} \| \sigma_h \|^2 + \epsilon \| \nabla u_h \|^2 \right) \geq -c \gamma \| (\sigma_h, u_h, \lambda_h) \|^2_B.
\]

This term can be absorbed by the stability estimate for the diffusion problem as long as \(\gamma \) is chosen to be sufficiently small. Note that \(\gamma \) does not depend on \(h, \epsilon \) or \(\beta \), i.e., the stability constant \(c_B \) does not depend on these parameters. \(\square \)

The boundedness of the bilinear form follows directly by combining the two results for the limiting subproblems.

Corollary 1 (Boundedness) There exists a constant \(C_B \) independent of the meshsize \(h \) such that

\[
|B(\sigma, u, \lambda; \tau_h, v_h, \mu_h)| \leq C_B \| (\sigma, u, \lambda) \|_+ \| (\tau_h, v_h, \mu_h) \|_+
\]

(28)

holds for all \((\sigma, u, \lambda) \in W \oplus W_h \) and \((\tau_h, v_h, \mu_h) \in W_h \).

As a last ingredient for deriving the a-priori error estimates, we have to establish some approximation properties of our finite dimensional spaces with respect to the norms under consideration.

3.4 Interpolation operators and approximation properties

Let us start by introducing appropriate interpolation operators and then recall some basic interpolation error estimates. For \(T \in T_h, E \in \mathcal{E}_h \), and functions \(u \in L^2(T), \lambda \in L^2(E) \) we define the local \(L^2 \) projections \(\Pi_k^T u \) and \(\Pi_k^E \lambda \) by

\[
(u - \Pi_k^T u, v_h)_T = 0, \quad \forall v_h \in \mathcal{P}_k(T),
\]

respectively

\[
(\lambda - \Pi_k^E \lambda, \mu_h)_E = 0, \quad \forall \mu_h \in \mathcal{P}_k(E).
\]

These interpolation operators satisfy the following error estimates, cf [9].

Lemma 2 Let \(\Pi_k^T \) and \(\Pi_k^E \) be defined as above. Then the estimates

\[
\|u - \Pi_k^T u\|_T \leq Ch^s |u|_{s,T}, \quad 0 \leq s \leq k + 1,
\]

\[
\|\nabla (u - \Pi_k^T u)\|_T \leq Ch^s |u|_{s+1,T}, \quad 0 \leq s \leq k,
\]

\[
\|u - \Pi_k^T u\|_{\partial T} + \|u - \Pi_k^E u\|_{\partial T} \leq Ch^{s+1/2} |u|_{s+1,T}, \quad 0 \leq s \leq k,
\]

hold with a constants \(C \) independent of \(h \).

The corresponding interpolation operators for functions on \(T_h \) respectively \(\mathcal{E}_h \) are defined elementwise and are denoted by the same symbols.

For the flux function \(\sigma \) we utilize the Raviart-Thomas interpolant defined by

\[
(\sigma - \Pi_k^{RT} \sigma, p_h)_T = 0, \quad \forall p_h \in [\mathcal{P}_{k-1}(T)]^d,
\]

\[
((\sigma - \Pi_k^{RT} \sigma) \nu, \mu_h)_E = 0, \quad \forall \mu_h \in \mathcal{P}_k(E), \ E \subset \partial T.
\]
In order to make moments of $\sigma \nu$ be well-defined on single facets E one has to require some extra regularity, e.g., $\sigma \in H(\text{div}, T) \cap L^s(T)$ for some $s > 2$ or $\sigma \in H^{1/2+\varepsilon}(T)$, cf. [10]. Under such an assumption, the following interpolation error estimates hold [10, 37].

Lemma 3 Let Π^{RT}_k be defined as above. Then the estimates
\[
\|\sigma - \Pi^{RT}_k \sigma\|_{\mathcal{T}} + h^{1/2}\|\sigma - \Pi^{RT}_k \sigma\|_{\mathcal{T}} \leq C h^s|\sigma|_{s, \mathcal{T}}, \quad 1/2 < s \leq k + 1,
\]
\[
\|\text{div}(\sigma - \Pi^{RT}_k \sigma)\|_{\mathcal{T}} \leq C h^s|\text{div}\sigma|_{s, \mathcal{T}}, \quad 1 \leq s \leq k + 1.
\]
hold with constant C independent of h.

Applying these results elementwise, we immediately obtain the following interpolation error estimates for the mesh dependent norms used above.

Proposition 8 Let $u \in H^1(\Omega) \cap H^{3/2+\varepsilon}(T_h)$, and set $\sigma := -\varepsilon \nabla u$. Then
\[
\||\sigma - \Pi^{RT}_k \sigma, u - \Pi^E_k u, \lambda - \Pi^T_k \lambda\||_{D, s} \leq C h^s\sqrt{\varepsilon}|u|_{s+1, T_h},
\]
\[
1/2 < s \leq k, \tag{29}
\]
and for $u \in H^1(\Omega)$ there holds
\[
\||u - \Pi^T_k u, \lambda - \Pi^T_k \lambda\||_{C, s} \leq C h^{s+1/2}\sqrt{|\beta|}|u|_{s+1, T_h},
\]
\[
0 \leq s \leq k, \tag{30}
\]
with constants C not depending on u or h. The same estimates hold if the s-norms are replaced by their counterparts without \ast.

Remark 3 The estimates of Proposition 8 hold with obvious modifications, if the smoothness s or the polynomial degree k vary locally. We assume uniform polynomial degree and smoothness only for ease of notation here.

The interpolation error estimate (29) is suboptimal regarding the approximation capabilities of the flux interpolant. In fact by Lemma 3 one can obtain
\[
\frac{1}{\sqrt{h}}\|\sigma - \Pi^{RT}_k \sigma\| \leq C h^s\sqrt{\varepsilon}|u|_{s+1, T_h} \quad \text{for } 1/2 < s \leq k + 1,
\]
so the best possible rate is h^{k+1} instead of h^k as for $\|\cdot\|_{\mathcal{D}}$ in (29). We will use this fact in Section 4 to derive super convergence results for the primal variable u_h.

3.5 A priori error estimates

The error of the finite element approximation can be decomposed into an approximation error and a discrete error. Let $(\sigma_h, u_h, \lambda_h)$ denote the discrete solution of (12), and let u be the solution of (11) and define $\sigma := -\varepsilon \nabla u$. Then we have
\[
\||\sigma - \sigma_h, u - u_h, u - \lambda_h\|| \leq \||\sigma - \Pi^{RT}_k \sigma, u - \Pi^E_k u, u - \Pi^T_k u\|| + \||\Pi^{RT}_k \sigma - \sigma_h, \Pi^E_k u - u_h, \Pi^T_k u - \lambda_h\||. \tag{31}
\]

Using stability and boundedness of the bilinear form, and applying Galerkin orthogonality, the second term can now also be estimated by the interpolation error.

Proposition 9 Let $(\sigma_h, u_h, \lambda_h) \in \mathcal{W}_h$ denote the solution of (12), and let $u \in H^1(\Omega) \cap H^{3/2+\varepsilon}(T_h)$ be the solution of the convection diffusion problem (11). Then there exists a constant C independent of the meshsize h such that the estimate
\[
\||\Pi^{RT}_k (-\varepsilon \nabla u) - \sigma_h, \Pi^E_k u - u_h, \Pi^T_k u - \lambda_h\|| \leq C h^s(\sqrt{\varepsilon} + h^{1/2}\sqrt{|\beta|})|u|_{s+1, T_h}
\]
holds for $1/2 < s \leq k$.

13
Proof. Let us define $\sigma = -\epsilon \nabla u$, $\lambda = u$. By application of the stability estimate (20), Galerkin orthogonality and the boundedness (22) of the bilinear form, we obtain

$$c_B \| (\Pi_k^{RT} \sigma - \sigma_h, \Pi_k^{T} u - u_h, \Pi_k^E u - \lambda_h) \|$$

$$\leq \sup_{(\tau_h, v_h, \mu_h)} B(\Pi_k^{RT} \sigma - \sigma_h, \Pi_k^{T} u - u_h, \Pi_k^E u - \lambda_h; \tau_h, v_h, \mu_h)/ \| (\tau_h, v_h, \mu_h) \|$$

$$= \sup_{(\tau_h, v_h, \mu_h)} B(\Pi_k^{RT} \sigma - \sigma, \Pi_k^{T} u - u, \Pi_k^E u - u; \tau_h, v_h, \mu_h)/ \| (\tau_h, v_h, \mu_h) \|$$

$$\leq C_B \| (\Pi_k^{RT} \sigma - \sigma, \Pi_k^{T} u - u, \Pi_k^E u - u) \|_* .$$

The assertion follows directly from (29). □

The complete error estimate can now be derived by combining (31) and Proposition 8.

Theorem 1 (Energy norm estimate) Let $(\sigma_h, u_h, \lambda_h)$ be the finite element solution of Method 3, and let $u \in H^1(\Omega) \cap H^{3/2+\varepsilon}(T_h)$ denote the solution of (11) and $\sigma := -\epsilon \nabla u$. Then

$$\| (\sigma - \sigma_h, u - u_h, u - \lambda_h) \| \leq C h^s (\sqrt{\epsilon} + h^{1/2} \sqrt{\beta}) \| u \|_{s+1,T_h}$$

holds for $1/2 < s \leq k$ with constant C independent of the meshsize h.

In the convection dominated case, the error estimate coincides with the well known error estimates for the discontinuous Galerkin and the streamline diffusion method for hyperbolic problems, cf. [26, 27].

Corollary 2 Let $\epsilon \leq |\beta|h$ on each element, and let the conditions of Theorem 1 hold. Then the estimate

$$\| (\sigma - \sigma_h, u - u_h, u - \lambda_h) \| \leq C h^{s+1/2} \sqrt{\beta} \| u \|_{s+1,T_h}$$

holds for $1/2 < s \leq k$ with constant C independent of the parameters ϵ, β and h.

This estimate holds in particular for the limiting hyperbolic problem ($\epsilon \equiv 0$) in which case $\sigma = \sigma_h \equiv 0$ and $\| (\sigma, v, \mu) \| = \| (v, \mu) \|_C$, and so Method 3 collapses with Method 2, i.e., the discontinuous Galerkin method for hyperbolic problems.

In analogy to standard error estimates for mixed methods for the Poisson problem, we obtain the following convergence result in the diffusion dominated regime.

Corollary 3 Let $\epsilon \geq |\beta|h$ and let the conditions of Theorem 1 hold. Then the estimate

$$\| (\sigma - \sigma_h, u - u_h, \lambda - \lambda_h) \| \leq C h^{s} \sqrt{\epsilon} \| u \|_{s+1,T_h}$$

holds for $1/2 < s \leq k$ with constant C independent of ϵ, β and h. Moreover, we have $\| \cdot \|_D \sim \| \cdot \|$. Clearly, this estimate holds also for Method 1 in the case of pure diffusion. Let us remark once again that all terms in the a-priori error estimates are defined locally, so the smoothness index s and the polynomial degree k can vary locally, allowing for hp-adaptivity.

4 Super convergence and postprocessing for diffusion dominated problems

The best possible rate for $\frac{1}{\sqrt{\epsilon}} \| \sigma - \sigma_h \|$ guaranteed by Theorem 1 and Corollary 3 is h^k, which is one order suboptimal regarding the interpolation error estimate of Lemma 3. It is well-known however that in the purely elliptic case, the optimal rate h^{k+1} can be obtained by a refined analysis, and we will derive corresponding results below. Since we consider the case of dominating diffusion in this section, we assume for ease of notation that $\epsilon \equiv 1$ in the sequel.
4.1 Refined analysis for pure diffusion

Although the estimate (29) is optimal concerning the approximation error with respect to the norm \(\| \cdot \|_D \), we can obtain better error estimates for \(\sigma = -\nabla u \), i.e., we will show that \(\| \sigma - \sigma_h \| \) depends only on the interpolation error \(\| \sigma - \Pi_k^{RT} \sigma \| \), and thus optimal convergence for \(\sigma_h \) can be expected. We refer to [3, 10, 36] for corresponding results in the mixed framework.

Proposition 10 Let \((\sigma_h, u_h, \lambda_h)\) denote the solution of (4), and let \(u, \sigma := -\nabla u\) be the solution of problem (3). Then

\[
\| (\sigma_h - \sigma, u_h - \Pi_k^T u, \lambda_h - \Pi_k^E u) \|_D \leq C h^s |u|_{s+1, \mathcal{T}_h}
\]

(32)

holds for \(1/2 < s \leq k + 1\) with constant \(C\) independent of \(h\).

Proof. Let us first consider the following term.

\[
B_D(\Pi_k^{RT} \sigma - \sigma, \Pi_k^T u - u, \Pi_k^E u - u; \tau_h, v_h, \lambda_h)
\]

\[
= (\Pi_k^{RT} \sigma - \sigma, \tau_h)_{\mathcal{T}_h} - (\Pi_k^T u - u, \text{div}\tau_h)_{\partial \mathcal{T}_h} + (\Pi_k^E u - u, \tau_h \nu)_{\partial \mathcal{T}_h}
\]

\[
+ (\text{div}(\Pi_k^{RT} \sigma - \sigma), v_h)_{\mathcal{T}_h} + ((\Pi_k^{RT} \sigma - \sigma) \nu, \mu_h)_{\partial \mathcal{T}_h}
\]

\[
= (\Pi_k^{RT} \sigma - \sigma, \tau_h)_{\mathcal{T}_h},
\]

where the last equality follows from the definition of the interpolants. Then in the same manner as in the proof of Proposition 9 we obtain

\[
c_D \| (\Pi_k^{RT} \sigma - \sigma_h, \Pi_k^T u - u_h, \Pi_k^E u - \lambda_h) \|_D \leq \| \Pi_k^{RT} \sigma - \sigma \|_{\mathcal{T}_h},
\]

and the statement follows by application of the triangle inequality and the interpolation error estimate (29).

\Box

Note that for the modified error (32), the best possible rate now is \(h^{k+1}\), which is optimal in view of the interpolation error estimates. As we show next, the estimates for \((\Pi_k^T u - u_h)\) and \((\Pi_k^E u - \lambda_h)\) can even be improved if we assume that the domain \(\Omega\) is convex, cf. [36] for similar results in the mixed framework.

Proposition 11 Let \(\Omega\) be convex and \(u \in H^1(\Omega) \cap H^{3/2+\varepsilon}(\mathcal{T}_h)\) be the solution of (3). Moreover, let \(u_h\) denote the discrete solution obtained by Method 1. Then the estimate

\[
\| \Pi_k^T u - u_h \|_0 \leq C h^{s+1} \begin{cases} |u|_{s+2, \mathcal{T}_h}, & k = 0 \\ |u|_{s+1, \mathcal{T}_h}, & k > 0 \end{cases}
\]

(33)

holds for \(1/2 < s \leq k + 1\) (resp. \(0 \leq s \leq 1\) for \(k = 0\)). If in addition \(f\) is piecewise constant, then

\[
\| \Pi_k^E u - u_h \|_0 \leq C h^{s+1} |u|_{s+1, \mathcal{T}_h}
\]

(34)

holds also for \(k = 0\).

Proof. Let \(\phi \in H^1_0(\Omega)\) denote the solution of the Poisson equation \(\Delta \phi = \Pi_k^T u - u_h\) with homogeneous Dirichlet conditions, and let \(z := \nabla \phi\). Due to convexity of \(\Omega\) we have

\[
\|\phi\|_{2,\Omega} \leq C \|\Pi_k^T u - u_h\|_0 \quad \text{and} \quad \|\phi - \Pi_k^T \phi\| \leq C h^{\min(k+1,2)} \|\Pi_k^T u - u_h\|_0.
\]

Using the definition of \(\phi\) and \(z\) we obtain

\[
\|\Pi_k^T u - u_h\|_0 = \|\Pi_k^T u - u_h, \text{div}z\| = (\Pi_k^T u - u_h, \text{div}(\Pi_k^{RT} z)) = (\sigma - \sigma_h, \Pi_k^{RT} z)
\]

\[
= (\sigma - \sigma_h, \Pi_k^{RT} z - \nabla \phi) - (\text{div}(\sigma - \sigma_h), \phi - \Pi_k^T \phi)
\]

\[
\leq \|\sigma - \sigma_h\|_0 \|\Pi_k^{RT} z - \nabla \phi\|_0 + \|\text{div}(\sigma - \sigma_h)\|_0 \|\phi - \Pi_k^T \phi\|_0.
\]

The first estimate now follows by Lemma 3. If \(f\) is piecewise polynomial of order \(k\) then \(\text{div}(\sigma - \sigma_h) \equiv 0\), so the last term in the above estimate vanishes and we conclude the second assertion. \(\Box\)
4.2 The diffusion dominated case

Let us show now that similar results still hold in the presence of convection as long as diffusion is sufficiently dominating. In this case, we can discretize the convective term without upwind stabilization, and we therefore consider the following bilinear form instead of (9)

$$B_{CU}^N(u_h, \lambda_h; v_h, \mu_h) := (u_h, \beta \nabla v_h)_{\Omega_h} + \langle \beta \nu \lambda_h, \mu_h - v_h \rangle_{\partial \Omega_h}. \quad (35)$$

Such a discretization for the convective part was investigated numerically but not analyzed previously in [19] for a 1D problem. There, the authors conjectured that this discretization already introduces some stabilization, which is not the case as is clear from our analysis.

Consistency and conservation: Substituting the continuous solution \(u \) for \(u_h \) and \(\lambda_h \) in (35) we obtain after integration by parts that

$$-(\text{div}(\beta u), v_h)_{\Omega_h} + \langle \beta \nu u, \mu_h \rangle_{\partial \Omega_h} = -(\text{div}(\beta u), v_h)_{\Omega_h} = -(f, v_h)_{\Omega_h},$$

so the bilinear form \(B_{CU}^N \) is consistent. The scheme is also conservative, since the flux \(\beta \nu \lambda_h \) in (35) is single valued on element interfaces. Moreover, we have

$$B_C(u_h, \lambda_h; v_h, \mu_h) = B_{CU}^N(u_h, \lambda_h; v_h, \mu_h) + \beta \nu \| \langle \lambda_h - u_h, \mu_h - v_h \rangle_{\partial \Omega_h} \|^2,$$

which clarifies what kind of upwind was used for the discontinuous Galerkin stabilization in (9).

Stability: Testing the bilinear form \(B_{CU}^N \) with \(v_h = -u_h \) and \(\mu_h = -\lambda_h \), we obtain

$$B_{CU}^N(u_h, \lambda_h; -u_h, -\lambda_h) = -(u_h, \beta \nabla u_h)_{\Omega_h} - \langle \beta \nu \lambda_h, \lambda_h - u_h \rangle_{\partial \Omega_h}$$

$$= -\frac{1}{2} \langle \beta \nu u_h, u_h \rangle_{\partial \Omega_h} - \langle \beta \nu \lambda_h, \lambda_h - u_h \rangle_{\partial \Omega_h}$$

$$= \frac{1}{2} \| \beta \nu \lambda_h - u_h \|^2_{\partial \Omega_h} - \frac{1}{2} \| \beta \nu \lambda_h - u_h \|^2_{\partial \Omega_h}.$$

Note that by adding stabilization the stabilization term \(\| \beta \nu \| \lambda_h - u_h \|^2_{\partial \Omega_h} \), the last term becomes strictly positive, i.e.,

$$B_C(u_h, \lambda_h; -u_h, -\lambda_h) = B_{CU}^N(u_h, \lambda_h; -u_h, -\lambda_h) + \beta \nu \| \lambda_h - u_h \|^2_{\partial \Omega_h}$$

$$= \frac{1}{2} \| \beta \nu \lambda_h - u_h \|^2_{\partial \Omega_h},$$

and we recover the first part of the stability estimate of Proposition 5.

Following the approach for the convection dominated case, we now consider the following method for the diffusion dominated regime, cf. also [19]:

Method 4 (no upwind) Find \((\sigma_h, u_h, \lambda_h) \in W_h \) such that

$$B_{NU}^N(\sigma_h, u_h, \lambda_h; \tau_h, v_h, \mu_h) = F(v_h, \mu_h), \quad (37)$$

holds for all \((\tau_h, v_h, \mu_h) \in W_h \) where \(B_{NU} := B_D + B_{CU}^N \).

For the proof of stability of the bilinear form \(B_{NU}^N \), we require that the convection is sufficiently small. A sufficient condition is given by

$$\| \beta \nu \| \lambda_h - u_h \|^2_{\partial \Omega_h} \leq c_D \| (\sigma_h, u_h, \lambda_h) \|^2_D, \quad \forall (\sigma_h, u_h, \lambda_h) \in W_h. \quad (38)$$

Remark 4 Recall that the stability constant \(c_D \) and thus the validity of condition (38) depends only on the constant of an inverse inequality and thus on the shape of the elements. Moreover, since both norms are defined elementwise, it is possible to decide for each element separately if stabilization should be added or not. Clearly, (38) can be shown to hold if \(\beta h \leq c_T \epsilon \) is valid on each element with constant \(c_T \) only depending on the shape of the individual elements.
Using (38) as the characterization of dominating diffusion, we can now prove the following stability result.

Proposition 12 Let (38) be valid. Then the estimate

\[
\sup_{\tau_h, \nu_h, \mu_h} \frac{B^{NU}(\sigma_h, u_h, \lambda_h; \tau_h, \nu_h, \mu_h)}{\| (\tau_h, \nu_h, \mu_h) \|_{D}} \geq \frac{c_D}{2} \| (\sigma_h, u_h, \lambda_h) \|_{D}^{2}
\]

(39)

holds for all \((\sigma_h, u_h, \lambda_h) \in W_h\) with \(c_D\) denoting the stability constant of Proposition 3.

Since the convective terms can be absorbed by the diffusion terms, the boundedness result of Corollary 1 applies with \(\| \cdot \|_{(\sigma)}\) replaced by \(\| \cdot \|_{D,(\sigma)}\). Using the stability estimate (39), the following a-priori error estimate is obtained in a similar manner as Proposition 10 for the purely elliptic case.

Proposition 13 Let condition (38) be valid and \((\sigma_h, u_h, \lambda_h)\) denote the solution of Method 4. Moreover, let \(u \in H^1(\Omega) \cap H^{3/2+\varepsilon}(T_h)\) denote the solution of problem (11), and set \(\sigma := -\nabla u\).

Then

\[
\| (\sigma - \sigma_h, u_h - \Pi_k u, \lambda_h - \Pi_k^T u) \|_{D} \leq C h^s |u|_{s+1, \Omega}
\]

holds for all \(1/2 < s \leq k + 1\) with constant \(C\) independent of \(h\).

Proof. In view of Proposition 10 we only have to ensure that the convective term does not disturb the estimate. Following the proof of Proposition 10, i.e., testing with the same test functions as there, we obtain the additional term

\[
B_C^{NU}(\Pi_k^T u - u, \Pi_k^E u - u; v_h, \mu_h) = (\Pi_k^T u - u, \beta \nabla v_h)_{T_h} + (\beta \nu (\Pi_k^E u - u), \mu_h - v_h)_{\partial T_h} = 0,
\]

since \(\beta \nabla v_h \in \mathcal{P}_k(T)\) on each element, and \(\beta \nu (\mu_h - v_h) \in \mathcal{P}_k(E)\) for each facet. The result now follows along the lines of the proof of Proposition 10. \[\Box\]

Proposition 13 allows us to derive a superconvergence estimate for \(\| \Pi_k^T u - u_h \|_{T_h}\) like in the purely elliptic case.

Proposition 14 Let \(\Omega\) be convex and \(u\) be the solution of (11) with \(\beta\) satisfying (38). Moreover, let \(u_h\) denote the discrete solution of Method 4. Then

\[
\| \Pi_k^T u - u_h \|_{T_h} \leq C h^{s+1} \begin{cases}
|u|_{s+2, \tau_h} & k = 0, \\
|u|_{k+1, T_h} & k > 0,
\end{cases}
\]

holds for \(1/2 < s \leq k + 1\) respectively \(0 \leq s \leq 1\) in case \(k = 0\).

Proof. By means of Proposition 13, the result follows in the same way as Proposition 11. \[\Box\]

Due to the lack of a condition \(\text{div}(\sigma - \sigma_h) \equiv 0\), which is valid in the purely elliptic case, we can not obtain (34) here. So in the lowest order case, superconvergence holds only under some additional smoothness of the solution \(u\).

4.3 Postprocessing

The super convergence results of the previous section can now be utilized to construct better approximations \(\tilde{u}_h \in \mathcal{P}_{k+1}(T_h)\) by local postprocessing. Here, we follow an approach proposed by Stenberg [36] for the mixed discretization of the Poisson equation (3), and construct our postprocessed solution from the approximations of the primal and the dual variable. Alternative approaches based on the Lagrange multipliers can be found in [3, 10].

Let us define \(\tilde{u}_h \in \mathcal{P}_{k+1}(T_h)\) elementwise by the variational problems

\[
(\nabla u_h^*, \nabla v)_T = -(\sigma_h, \nabla v)_T, \quad \forall v \in \mathcal{P}_{k+1}(T) : (v, 1)_T = 0
\]

\[
(u_h^*, 1)_E = (u_h, 1)_T.
\]

Then the following order optimal error estimate holds.
Proposition 15 Let Ω be convex and u denote the solution of (11) with (38) being valid. Moreover, let $(\sigma_h, u_h, \lambda_h)$ be the solution of Method (4) and u_h^* be defined as above. Then

$$\|\nabla(u_h^* - u)\|_{T_h} \leq C h^s |u|_{s+1, T_h}$$

and

$$\|u_h^* - u\|_{T_h} \leq C h^{s+1} \begin{cases} \|u\|_{s+2, T_h}, & k = 0 \\ \|u\|_{s+1, T_h}, & k > 0, \end{cases}$$

for all $1/2 < s \leq k + 1$ with constant C independent of the meshsize h. For $k = 0$, the second estimate holds for $0 \leq s \leq 1$.

Proof. Let $\tilde{u}_h \in H^1(\Omega) \cap P_{k+1}(T_h)$ denote the finite element solution of the standard H^1 conforming finite element method applied to the solution of (3). Then $\|\nabla(u - \tilde{u}_h)\|_{T_h} \leq C h^s |u|_{s+1, T_h}$ for $0 \leq s \leq k + 1$. Moreover, $\|u - \tilde{u}_h\|_{T_h} \leq C h^{s+1} |u|_{s+1, T_h}$ for $0 \leq s \leq k + 1$, since we assumed convexity of Ω and $f \in L^2$. Now define $\tilde{v}_h := (I - \Pi_h^T)(\tilde{u}_h - u_h^*)$. Then

$$\|\nabla \tilde{v}_h\|_{T_h}^2 = (\nabla(I - \Pi_h^T)(\tilde{u}_h - u_h^*), \nabla \tilde{v}_h)_T = (\nabla(\tilde{u}_h - u_h^*), \nabla \tilde{v}_h)_T$$

$$= (\nabla(\tilde{u}_h - u), \nabla \tilde{v}_h)_T + (\nabla u + \sigma_h, \nabla \tilde{v}_h)_T$$

$$\leq \|\nabla \tilde{v}_h\|_T (\|\nabla(u - \tilde{u}_h)\|_T + \|\sigma_h + \nabla u\|_T).$$

Summing up over all elements and using the estimates for $(u - \tilde{u}_h)$ and Proposition 13 yields

$$\|\nabla(u - u_h^*)\|_{T_h} \leq \|\nabla(u - \tilde{u}_h)\|_{T_h} + \|\nabla(\tilde{u}_h - u_h^*)\|_{T_h}$$

$$= \|\nabla(u - \tilde{u}_h)\|_{T_h} + \|\nabla \tilde{v}_h\|_{T_h}$$

$$\leq C h^s |u|_{s+1, T_h},$$

which already is the first part of the result. In order to establish the L^2 estimate, note that by $\Pi_h^T \tilde{v}_h = 0$ we obtain $\|\tilde{v}_h\|_T \leq C h \|\nabla \tilde{v}_h\|_T$ via an inverse inequality. Hence

$$\|u - u_h^*\|_T \leq \|u - \tilde{u}_h\|_T + \|\tilde{u}_h - u_h^*\|_T$$

$$\leq \|u - \tilde{u}_h\|_T + \|\tilde{v}_h\|_T + \|\Pi_h^T(\tilde{u}_h - u_h^*)\|_T$$

$$= \|u - \tilde{u}_h\|_T + \|\tilde{v}_h\|_T + \|\Pi_h^T(\tilde{u}_h - u)\|_T + \|\Pi_h^T(u - u_h)\|_T.$$

Summing up over all elements, and using that

$$\|\Pi_h^T(\tilde{u}_h - u)\|_{T_h} \leq \|\tilde{u}_h - u\|_{T_h} \leq C h^{s+1} |u|_{s+1, T_h},$$

and Proposition 14, we conclude the L^2 estimate. \hfill \Box

Remark 5 In the purely elliptic case ($\beta \equiv 0$) with f piecewise constant, we can obtain the optimal estimate $\|u - u_h^*\| \leq h^{s+1} |u|_{s+1, T_h}$ also for the case $k = 0$ by using the estimate (34) instead of Proposition 14.

5 Implementation and numerical tests

In this section, we want to illustrate the theoretical results derived in the previous section by some numerical tests. As a model problem, let us consider

$$-\epsilon \Delta u + \beta \nabla u = f \quad \text{in} \quad \Omega := (0, 1)^2$$

$$u = g \quad \text{on} \quad \partial \Omega,$$

(40)

where ϵ and β are constant on Ω. Since for the limiting hyperbolic problem our method is equivalent to the discontinuous Galerkin method, we will compare our results mainly to those
obtained by the streamline diffusion method [24, 27, 25]; we refer to [22] for a detailed comparison of hp-versions of the streamline diffusion method with discontinuous Galerkin methods for first order hyperbolic problems.

The variational form of the streamline diffusion method is formally derived by using \(v + \alpha \beta \nabla v \) as a test function in the variational formulation of (40). Assuming \(g = 0 \) for simplicity, this yields

Method 5 (streamline diffusion) Find \(u \in H^1_0(\Omega) \cap H^2(T_h) \) such that

\[
e(\nabla u, \nabla v)_{T_h} + (\beta \nabla u, v)_{T_h} + \alpha [-(\epsilon \Delta u, \beta \nabla v)_{T_h} + (\beta \nabla u, \beta \nabla v)_{T_h}] = (f, v)_{T_h} + \alpha (f, \beta \nabla v).
\]

In order to obtain stability of the method, the stabilization parameter has to be chosen appropriately, depending on the shape of the elements in the mesh. Typically, the stabilization parameter is in the order of \(h/|\beta| \), where \(h \) is the local mesh size. For higher order methods, also the polynomial degree influences the choice of \(\alpha \), cf. [22]. For our numerical tests below, we use \(\alpha = 1 \) for problems with dominating convection, and we set \(\alpha = 0 \) if diffusion dominates.

5.1 Numerical tests

With the following examples, we want to illustrate the performance of the hybrid-mixed discontinuous Galerkin method under the presence of boundary layers (Example 1), for discontinuous solutions respectively internal layers (Example 2), and for diffusion dominated problems (Example 3). Throughout, we will compare our method using polynomials of order \(k \) with the streamline diffusion method using polynomials of degree \(k + 1 \). Thus, formally the approximation properties of our finite element spaces is one order less. However, as our numerical results indicate, this affects the results only in the diffusion dominated case, where according to our theory we can increase the approximations by local postprocessing.

Example 1 (boundary layers): In the first example, we set \(g = 0 \) and

\[
f = \beta_1 [y + (e^{\beta_2 y/\epsilon} - 1)/(1 - e^{1/\epsilon})] + \beta_2 [1 + (e^{\beta_1 x/\epsilon} - 1)/(1 - e^{\beta_1/\epsilon})].
\]

For \(\epsilon > 0 \), the exact solution to (40) is then given by

\[
u(x, y) = [x + (e^{\beta_1 x/\epsilon} - 1)/(1 - e^{\beta_1/\epsilon})] \cdot [y + (e^{\beta_2 y/\epsilon} - 1)/(1 - e^{\beta_2/\epsilon})],
\]

i.e., the solution has boundary layers at the top and right outflow boundaries.

We set \(\epsilon = 0.01 \) and \(\beta = (2, 1) \), and then solve the problem numerically for various meshsizes \(h \) and polynomial degrees \(k \). Table 1 displays the errors of the numerical solutions obtained with Method 3 and the streamline diffusion method.

<table>
<thead>
<tr>
<th>(h)</th>
<th>(k=1) rate</th>
<th>(k=2) rate</th>
<th>(k=3) rate</th>
<th>(k=0) rate</th>
<th>(k=1) rate</th>
<th>(k=2) rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>0.227</td>
<td>0.223</td>
<td>0.215</td>
<td>0.162</td>
<td>0.082</td>
<td>0.07188</td>
</tr>
<tr>
<td>0.5000</td>
<td>0.199</td>
<td>0.177</td>
<td>0.33</td>
<td>0.160</td>
<td>0.064</td>
<td>0.02859</td>
</tr>
<tr>
<td>0.2500</td>
<td>0.142</td>
<td>0.114</td>
<td>0.64</td>
<td>0.097</td>
<td>0.029</td>
<td>0.00874</td>
</tr>
<tr>
<td>0.1250</td>
<td>0.089</td>
<td>0.059</td>
<td>0.94</td>
<td>0.048</td>
<td>0.011</td>
<td>0.00209</td>
</tr>
<tr>
<td>0.0625</td>
<td>0.050</td>
<td>0.025</td>
<td>1.22</td>
<td>0.017</td>
<td>0.003</td>
<td>0.00034</td>
</tr>
<tr>
<td>0.0313</td>
<td>0.027</td>
<td>0.009</td>
<td>1.47</td>
<td>0.004</td>
<td>0.001</td>
<td>0.00004</td>
</tr>
</tbody>
</table>

Table 1: \(L^2 \) errors obtained for Example 1 with \(\epsilon = 0.01 \) and \(\beta = (2, 1) \) on uniformly refined meshes with meshsize \(h \) using polynomials of order \(k \).

Since the exact solution is essentially bilinear away from the boundary layers, one cannot expect to gain much from further increasing the polynomial degree. As the problem gets more and more
diffusion dominated with decreasing meshsize h, the error of the hybrid-mixed method decays with the rate h^{k+1}, which is the order of the best-approximation error. While we showed that optimal rates hold if stabilization is omitted in the diffusion dominant case, the optimal L^2 error estimate for the stabilized method 3 is not yet covered by our theory.

Since in our example the location of boundary layers is determined a-priori, one could of course also use locally refined meshes, see Figure 1.

![Figure 1: Example 1: exact solution and locally adapted mesh with 878 elements.](image)

Example 2 (discontinuities, internal layers): For the second test case, we set $f = 0$, $\beta = (2, 1)$ as before, and $\epsilon = 10^{-6}$, so we are dealing with an (almost) hyperbolic problem. Additionally, we introduce a discontinuity in the boundary conditions, i.e., we set $u(0, y) = H(y - 0.5)$ on the left inflow boundary ($H(\cdot)$ denotes the heaviside function), and we set $u = 0$ on the remaining part of the boundary. The exact solution for $\epsilon = 0$ (the boundary conditions at the outflow boundaries have to be omitted in this case) is given by

$$u(x, y) = \begin{cases} 1 & y > 0.5(1 + x) \\ 0 & \text{else}. \end{cases}$$

Below we use the solution of the purely hyperbolic problem also for calculation of the numerical errors of the finite element solutions. Again, we solve on uniform meshes (not aligned to the discontinuity) and compare the solutions obtained with Method 3 and the streamline upwind method for different polynomial degrees.

![Table 2: L^2 errors of streamline-diffusion(k) and hybrid-mixed-DG(k) method obtained for Example 2 with $\epsilon = 10^{-6}$ and $b = (2, 1)$ on uniformly refined meshes with meshsize h and polynomial degree k.](image)

Since the exact solution has a line discontinuity at $y = 0.5(x+1)$, one cannot expect to get better convergence rates than $h^{1/2}$. Moreover, since the solution is piecewise constant, the quality of the reconstructions can only be improved slightly by increasing the polynomial degree. Although the streamline-diffusion method seems to provide better convergence rates, the actual reconstruction errors are smaller for the hybrid-mixed method. In Figure 2 we display the solutions obtained with...
the streamline diffusion and the hybrid-mixed method, respectively. In both cases, the crosswind diffusion is kept to a minimum, so the jump of the exact solution is captured within one element layer, although the mesh is not aligned with the streamline velocity β.

Figure 2: Streamline-diffusion(3) and hybrid-mixed-DG(2) solution obtained on uniformly refined meshes with 512 elements. The streamline diffusion method develops boundary layers at the outflow boundaries. Both methods capture the discontinuity within one element layer.

Let us now turn to a diffusion dominated problem and illustrate the increase in accuracy obtained by local post-processing discussed in Section 4.3.

Example 3 (diffusion dominated): Consider problem (40) with $\beta = (2, 1)$, $\epsilon = 1$ and $f = 1$. Moreover, set $u = 0$ at the boundary. We solve problem (40) with Method 4, and compare the numerical results with those obtained by the streamline diffusion method. Since for the problem under consideration, we do not have an analytical solution, we use the conforming finite element solution with polynomial degree 8 as approximation for the exact solution. The results of the numerical tests are summarized in Table 3.

![Figure 2](image_url)

<table>
<thead>
<tr>
<th>h</th>
<th>$k=1$</th>
<th>rate</th>
<th>$k=2$</th>
<th>rate</th>
<th>$k=0$</th>
<th>rate</th>
<th>$k=1$</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>0.040175</td>
<td></td>
<td>0.017043</td>
<td></td>
<td>0.022501</td>
<td></td>
<td>0.019833</td>
<td></td>
</tr>
<tr>
<td>0.5000</td>
<td>0.009128</td>
<td>2.14</td>
<td>0.002682</td>
<td>2.67</td>
<td>0.022382</td>
<td>0.01</td>
<td>0.004392</td>
<td>2.18</td>
</tr>
<tr>
<td>0.2500</td>
<td>0.005720</td>
<td>0.67</td>
<td>0.000423</td>
<td>2.66</td>
<td>0.010841</td>
<td>1.05</td>
<td>0.001747</td>
<td>1.33</td>
</tr>
<tr>
<td>0.1250</td>
<td>0.001652</td>
<td>1.79</td>
<td>0.000061</td>
<td>2.81</td>
<td>0.005441</td>
<td>0.99</td>
<td>0.000487</td>
<td>1.84</td>
</tr>
<tr>
<td>0.0625</td>
<td>0.000428</td>
<td>1.95</td>
<td>0.000008</td>
<td>2.87</td>
<td>0.002722</td>
<td>1.00</td>
<td>0.000126</td>
<td>1.96</td>
</tr>
</tbody>
</table>

Table 3: L^2 errors of streamline-diffusion(k) and hybrid-mixed-DG(k) method obtained for Example 2 with $\epsilon = 10^{-6}$ and $\beta = (2, 1)$ on uniformly refined meshes with meshsize h and polynomial degree k.

Since in the diffusion dominated case, we omit stabilization, the streamline diffusion method coincides with the standard Galerkin method, so we obtain optimal L^2 error estimates. The results obtained with the hybrid-mixed method are also optimal with respect to the approximation properties of the finite element space. For improving the approximation for the hybrid-mixed method in that case, we can apply local postprocessing as discussed in Section 4. In Table 4 we list the results obtained after postprocessing. For comparison, we also list the L^2 best approximation errors for the according finite element spaces.
1.00000 0.022149 0.012169 0.018277 ...
0.50000 0.012273 0.001657 2.88 0.004356 2.07 0.001108 2.19
0.25000 0.004598 1.42 0.000323 2.36 0.001741 1.32 0.000185 2.58
0.12500 0.001329 1.79 0.000048 2.74 0.000487 1.84 0.000027 2.81
0.06250 0.000347 1.94 0.000007 2.82 0.000126 1.95 0.000004 2.87

Table 4: L^2 errors of postprocessed solution of the hybrid-mixed-DG(k-1) method and the best piecewise polynomial approximation of order k on uniform meshes with meshsize h.

Throughout our numerical experiments, the error of the postprocessed solution was always close to the best approximation error. Moreover, the hybrid-mixed method with postprocessing always yielded slightly more accurate results than the standard conforming finite element method with the corresponding polynomial degree.

5.2 Comparison to other discontinuous Galerkin methods

After the numerical experiments, we would like to compare the hybrid-mixed method with other variants of discontinuous Galerkin methods, in particular, with the interior penalty method [2] and the multiscale DG method presented in [12]. The latter method is somewhat similar to the hybrid-mixed method, as it introduces new degrees of freedom at the skeleton, and allows to eliminate local degrees of freedom by solution of local subproblems.

![Degrees of freedom (dofs) for the interior penalty method and the multiscale DG method with order $k = 2$, and the hybrid mixed method with order $k = 1$.](image)

For the interior penalty Galerkin methods, all degrees of freedom (dofs) are present in the global system. The assembling of the element contributions requires only the dofs of one element, while the assembling of the coupling terms requires the dofs of neighboring elements. Hence the degrees of freedom of one element are coupled to those of the neighboring elements.

In the multiscale DG method, the global degrees of freedom correspond to the trace (at the skeleton) of a continuous finite element function. A vertex dof couples with all degrees of freedom belonging to the skeleton of all elements sharing that vertex, and dofs of one edge only couple to those belonging to the skeleton of the element sharing that edge. This carries over to three dimensional problems, where vertex dofs couple with all dofs belonging to the skeleton of the vertex patch, and so on.

In the hybrid-mixed method, the global degrees belonging to one edge only couple with those of the skeleton of the neighboring element. In three dimensions, the global dofs correspond to single faces, and they couple only to those on the faces of the two neighboring elements.
For a comparison of the computational effort required for the different methods, we summarize the number of local and global degrees of freedom, and the number of non-zero entries present in the global linear system in Table 5. For brevity, we only list the leading order terms.

Table 5: Leading order of the number of degrees of freedom for the interior penalty method, the multiscale DG method, and the hybrid-mixed method of order k.

<table>
<thead>
<tr>
<th></th>
<th>interior penalty</th>
<th>multiscale</th>
<th>hybrid-mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>local element dofs</td>
<td>$\frac{1}{4}k^2$</td>
<td>$\frac{1}{2}k^2$</td>
<td>$\frac{1}{2}k^2$</td>
</tr>
<tr>
<td>global element dofs</td>
<td>$\frac{1}{4}k^2$</td>
<td>$\frac{3}{2}k$</td>
<td>$\frac{3}{2}k$</td>
</tr>
<tr>
<td>global dofs</td>
<td>$\frac{1}{4}k^2n_{el}$</td>
<td>$\frac{1}{2}kn_{el}$</td>
<td>$\frac{1}{2}kn_{el}$</td>
</tr>
<tr>
<td>nonzero entries</td>
<td>k^2n_{el}</td>
<td>$\frac{1}{2}k^2n_{el}$</td>
<td>$\frac{1}{2}k^2n_{el}$</td>
</tr>
</tbody>
</table>

The elimination of the internal degrees of freedom makes the assembling process of the multiscale DG and the hybrid-mixed method more expensive than that of the interior penalty method. However, the coupling is decreased considerably, and therefore, the local assembling can be done in parallel more easily. The global systems of the multiscale DG method and the hybrid-mixed method involve less degrees of degrees of freedom and less coupling than the one for the interior penalty method.

5.3 Concluding remarks

In this paper we proposed a new finite element method for convection diffusion problems based on a mixed discretization for the elliptic part and a discontinuous Galerkin formulation for the convective part. The two methods are made compatible via hybridization, and the Lagrange multipliers play an essential role for the stabilization of the method and throughout the analysis.

Like other discontinuous Galerkin methods, but in contrast to the streamline diffusion method, the presented scheme is locally and globally conservative, which makes it a natural candidate for problems where conservation is important, e.g., for time dependent problems. Moreover, the treatment of boundary conditions is very natural and allows a seamless change from convection dominated to purely hyperbolic regimes, where the outflow boundary conditions just disappear in the numerical scheme. In the hyperbolic limit, our method corresponds to (a hybrid version of) the classical discontinuous Galerkin method and thus inherits the stabilizing features of discontinuous Galerkin methods for hyperbolic problems.

The hybrid-mixed method allows a more natural treatment of elliptic operators than the discontinuous Galerkin methods. In particular, the discretization of diffusion terms does not increase the stencil of the scheme. In contrast to the streamline diffusion method and to several variants of discontinuous Galerkin methods, no tuning of a stabilization parameter is needed. In the diffusion dominated regime, the numerical solutions can be further improved by local postprocessing.

A particular advantage of our method from a computational point of view is that it is formulated and can be implemented purely element wise. This allows static condensation of the primal and flux variables on the element level, and only the Lagrange multipliers appear in the global system. Thus the presentend hybrid-mixed discontinuous Galerkin method has smaller stencils as well as fewer degrees of freedom than standard discontinuous Galerkin methods, but still provides the same stability.

References

